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DETECTION PERFORMANCE OF HORIZONTAL LINEAR HYDROPHONE ARRAYS

IN SHALLOW WATER

by

Richard Klemm

ABSTRACT

A comprehensive model study of the use of horizontal hydrophone arrays in

shallow water is presented. Existing knowledge of signal-processing tech-

niques is applied to a shallow-water sound-propagation model in order to

determine the influence of shallow-water conditions on the design of

receiver structures. In particular, the spatial part of the problem of

the detection of targets in the presence of directive noise sources is of

interest. Most literature on array processing simplifies receiver

structures by making simple asstumptions about the medium (e.g. coherent

pldne waves). These approximations may be valid to some extent for

sources in deep water and radar; in shallow water, however, one is faced

with the problem of target detection in a waveguide. This investigation

was therefore made in order to find simple receiver structures when the

characteristics of the medium are taken into account. A great variety of

array processors (quadratic, linear, adaptive, nonadaptive, optimum,

suboptimum) is discussed. In addition, some system limitations (receiver

bandwidth, distortion of the array shape, inclusion of the target in the

noise estimation in passive systems) are considered.
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GLOSSARY

Matrix Notations

A matrix

a vector

a scalar

a* conjugate complex transpose

C = A B matrix product Cik = E airbrk
r

B = A-  matrix inversion (A = square matrix)

B = H H* factorization of positive definite matrices

tr(A) trace of the square matrix A (: ai)

c = a*b scalar product c = E atb i
1

C = a b* dyadic product cik = aib*

I unity matrix

i th column of I

0 null matrix

o null vector

Abbreviations

AEP auxiliary element processor

BIN binomial shading

CBF conventional beamformer

COS cosine shading

DIP dipole processor

E{ } expectation

I/N interference-to-noise ratio

MMF matrix matched filter (generalized beamformer)

4L 3
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MRP multibeam processor

NFB narrowband filter bank

NS noise suppression

OLP optimum linear processor

OQP optimum quadratic processor
Re{ real part

Symbols

The following symbols are used throughout the report. Symbols that are
used only a few times or denote different subjects are explained in the
text.

A diagonal matrix containing the complex amplitudes of
modal arrivals (deterministic part of the model)

6 bearing

b beamformer vector

bi  beamformer coefficients

b bandwidth

c sound velocity

D dipole- or nullformer matrix

d spacing between hydrophones

ti i th column of unity matrix

F number of frequency channels

F spatial filter matrix

f frequency

n random phase

G gain

G angle interval covariance matrix

h processor vector

H matrix matched filter; generalized beamformer

I unity matrix

4
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k processor vector

k, ko  wavenumber = 2w/A

kn  modal wavenumber : 2/Xn

K processor matrix

k. test function

X wavelength

L order of vector space after pre-transform

A modal wave length

M number of modes

M matrix describing phase relations between modes and sensors

N number of sensors

N noise covariance matrix

n noise vector

P target-signal covariance matrix

P pressure

P, Ps P N power

Q noise covariance matrix

R covariance matrix

P9 Pik spatial correlation

r, r. range

S signal covariance matrix

s target-sigrial vector

T pre-transform

T observation time, filter time response duration

t time

U unity matrix

u angle interval
0

[,5
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u directional cosine

v vector of random phases

Vcovariance matrix of v

W factorized covariance matrix

x vector of received signals

X covariance matrix of received signals

Yn(t) modal plane waves

Yvector of complex modal amplitudes

Y covariance matrix of y

6
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INTRODUCTION

The following investigation has been made to answer the question of which

kind of spatial signal processing should be applied to linear horizontal

hydrophone arrays in shallow water. The use of horizontal arrays is of

special interest for several reasons. On the one hand the detection

problem in more or less shallow water is primarily two-dimensional, i.e.

horizontal. On the other hand horizontal arrays offer great advantages when

installed in mobile system because they can be implemented as flexible

array cables. Typical advantages are' no limitation on the aperture, low

ship-noise level due to the distance to the towing ship, and directionality

of towing ship noise, which makes noise suppression more effective. The

obvious disadvantage is the rotational symmetry of the array pattern of

line arrays, which makes them sensitive to all kinds of nondirectional

noise.

The theory of optimum arrays has been treated repeatedly in the literature

[1,2,3,4 1. Many other papers, [6,6,7,8,9) are concerned with suboptimum

adaptive approaches to optimum array theory, in particular by replacing the

crucial inversion of the noise covariance matrix contained in all adaptive
methods for detection and resolution by some adaptive algorithm for

minimization of the noise, e.g. the LMS-algorithm. The problem of choosing

the right algorithm or even deciding in favour of the most cumbersome way

of adaptive noise suppression (estimation and inversion of the noise

covariance matrix [1011) depends on the temporal behaviour of the noise field

and is not the subject of this report.

The major part of the literature on detection theory by linear array discusses

processors and their suboptimum implementations. This means, however, that

certain assumptions are made about the medium, i.e. that the far fields of

point sources are coherent plane waves. Such an assumption may be made in

certain applications, for example, with radar, with small arrays, or with

sonars in which the beamwidth is broad compared with the spatial distribution

of any signal.

7



SACLANTCEN SR-43

In this report, signal-processing techniques -, ipplied to a shallow-water

sound propagation model (normAl e,). The main objective is to find out

the particular influence of the "shallow-water" medium on the design of

arrK, processors. Thus a considerable part of the report is concerned with

optimum and suboptimum quadratic array processors (e.g. quadratic adaptive

sidelobe cancellers). These processors are of special importanc for the

performance of large arrays in the presence of random wavefronts. The

problem of limitation of array length has been discussed for instance in

[1]]; however, this discussion is based on a linear processing scheme

(conventional beamformer).

Model studies such as the one presented in this report are usually based on

a number of assumptions (see Ch. 1) that tend to simplify the problem so

that it becomes feasible for numerical calculations. Therefore the results

achieved have to be considered as quite optimistic. It turns out,

nevertheless, that even under these optimistic assumptions it is possible

to draw conclusions on which kind of processing should be taken into

consideration and on which method should be rejected. In that sense the

results prespnted here can be used to compare different array processors

rather than being considered as absolute measures of the array performance.

The actual array gain depends on many unreliable parameters, such as the

sound-speed profile (which may change witi, time), the weather conditions,

the particular area, the noise configuration, and others. Consequently,

experimental results will give more realistic figures of performance, but

only for the special conditions of the experiment. The model study may

suffer from too many idealizations, but is more general in that it does not

depend on any special area or on temporary environmental conditions; it

seems, therefore, to be the right way for systems design. The experimental

validation of the results achieved has to be done anyway, but it will be

confined to those processor schemes that have proved to be useful.

As is well known, array processing can be carried out in the time/space

domain or in the frequency/space domain. For very large arrays (spatial

correlation length small compared with the aperture of array) d frequency/

wavenumber representation, i.e. Fourier-transform in time and space, offers

some advantages. In the following only the frequency/space representation

818
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uf signals is considered. That means that all sensor output signals are

first subjected to spectral analysis and that spatial processing is carried

out for each frequency separately. There are several good reasons for the

frequency domain approach. First of all, the normal-mode solution of the

wave equation is, by definition, valid for only one single frequency.

Therefore, modelling of broadband signals by running the mode program

several times for different frequency is a quite cumbersome process, but is

still a rough approximation. Furthermore, the consideration of broadband

signals introduces another dimension of degrees of freedom in that the

array gain depends now on the spatial and the spectral energy distribution.

Thirdly, from the viewpoint of implementation of adaptive broadband

systems, the frequency domain approach yields significant saving in

arithmetic operations.

The main subject of this report is the detection performance of horizontal

arrays in the presence of more or less directive noise sources. In

addition, some spatially white noise is always assumed. In order to

distinguish between them, directive noise sources are referred to as

interference, and the white component is called noise. This distinction is

important, particularly because the interference-to-noise ratio is the key

parameter in all array gain calculations, whereas the signal-to-noise ratio

does not have any influence on the gain.

9
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1 ASSUMPTIONS

The following assumptions have to be made to simplify the problem so

that it can be handled numerically with reasonable effort. Therefore the

results achieved have to be considered to be somewhat optimistic and not

generally valid for all scopes of application. Nevertheless, for the

purpose of a comparative study on array-processing schemes it turns out

that even under the optimistic assumptions listed below it is possible to

decide quite well which kind of processing should or should not be chosen

under certain conditions.

1.1 Signal Source

The signal source is either the sound radiated by a target or the echo of a

target due to a transmitted pulse. The target is point shaped.

1.2 Sound Propagation Model

The propagation of sound due to point sources is modelled by the normal-

mode SNAP program [12). This program calculates the far field of a point

source for a three-layer medium (water, sediment, sub-bottom). Input para-

meters are

- sound parameter
- water depth
- sediment depth
- frequency
- densities of sediment and sub-bottom
- compressional attenuations in sediment and sub-bottom
- compressional speed in sediment and sub-bottom
- shear attenuation in sub-bottom

Thus a considerable number of parameters can be varied. For our investiga-

tion only two different sets of channel parameters (summer and winter

profile) are considered for three frequencies (200, 800, 3200 Hz).

11 PvizzaNG PAu~ BiAm-NT F11.4z
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The pressure at a point (r,z) of the sound field due to a point source in

the origin (0, z ) can be expressed as:

2

w p / M u (z )u (z) -n rp(r,z) = ao 1 r 0n e n [Eq. 1]H Ir n=l k
n

j(knr - cut -

e

where a = sound pressure I m apart from the source

H = water depth

un (z) = normal mode functions

kn = modal wavenumbers

(n = modal attenuation coefficient

p = water density

W = source frequency.

By means of the following abbreviations

W 2
C : a- 8rr

onr

An u n(z )u n(z) -
e -u nr

k n

equation 1 becomes

M J(knr -wt
p(r,z) = C Z An e n [Eq. 2]

n=ln

The values An and the wavenumbers kn are calculated by the SNAP program.

1.3 Homogeneity

The sound field is supposed to be homogeneous within the dimensions of the

horizontal array. Thus spatial correlation between hydrophones is

independent of the position within the aperture, i.e. the correlation of an

equally-spaced array between the i-th and k-th hydrophone is

Oik = Oi+k,k+t = Pi-k = P*k-i [Eq. 3]
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This yields some advantage for calculating the gain of large arrays,

rather than having significant influence on the results. On the one hand

the modelling program has to be run only once for the array instead of once
for each hydrophone (saving of computer time). On the other hand this

property [Eq. 3] causes the covariance matrices to be Toeplitz matrices,

which are completely descrihed by their first column (saving of computer

memory).

1.4 Stationarity

The sound field is supposed to be short-time stationary. That means that

any changes in the statistics of the sound field are slow compared with the

time needed for signal processing, so that sufficiently stable estimates of

the covariance matrices for signals and noise can be obtained, or,

equivalently, that adaptive algorithms for noise suppression (e.g. LMS-

algorithm) get enough data for convergence.

1.5 The Noise Field

The noise field may contain

-Point sources (interference), e.g. ships or jammiers

-Uncorrelated (spatially white) noise, e.g. receiver noise,
flow noise, ambient noise.

-Wide-angle noise, i.e. noise uniformly distributed over a
certain wide angle interval, which is for the rough
modelling of noise radiated by sources that cannot be
considered to be point-shaped (e.g. dense shipping areas).
In the limit (i.e. for 1800) the noise becomes isotropic,
which may be a rough approach to reverberations, surface
noise, and other kind of ambient noise 113,14,15) .

1.6 Correlation between Modes

Information about correlation between modes is not generally available.

For horizontal arrays the modal amplitudes CA nexp(-acnr) are constant for

all sensors. Therefore, Eq. 2 describes a sum of plane waves travelling at

13
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:W

different angles cos ' n = k n/k (ko = cT where c(z) is the sound speed

at receiver depth. Therefore the path length is different for every

wavenumber. It is supposed that the time-varying surface causes a phase

moduiation for each plane wave, so that the pressure becomes

Sj(k r-wt + + n
p(rz) C A n [Eq. 4]

If the modal phase 'pn is random between observations and uniformly

distributed, different arrivals are uncorrelated with one another.

Assuming different modes to be uncorrelated with one another also causes

random wave fronts for noise and signal, which will have some significant

influence on the spatial signal processing. In this sense uncorrelated

modes are a worst-case assumption.

On the other hand any range dependence of the sound field due to mode

interference is omitted by assuming uncorrelated modes. That means

that no mode interference appears along the array aperture. For low

frequencies, therefore, omitting the phase relations among modes might be

an optimistic approach, because the sound field consists only of a few

modes. Furthermore, at low sea state, the amplitudes of the time-varying

surface are small compared with the wavelength of the sound wave.

Therefore, relatively high coherence and hence some interference among

modes can be expected.

At higher frequencies even small variations of the surface will have

considerable influence on the modal phase Pn' Furthermore, the distri-

bution of the signal (or noise) energy over a high number of modes will

cause some equalization in range rather than a distinct interference

pattern.

1.7 Far-Field Conditions

The receiving array is supposed to be in any case in the far field of

signal and noise sources. For the vertical dimension this has been done

14
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already by assuming the sound field to be described in terms of discrete

modes. Replacing the range-dependent Hankel-function by an exponential

term in Eq. 2 is another far-field approximation. Furthermore, the

near field of the receiver,due to scattering of the sound energy coming from

long distance at the random surface,is neglected. This part of the sound

field, and surface noise as well, are supposed not to be highly directive

and therefore may be considered to be a part of the isotropic or even white

noise fi1. It is assumed, furthermore, that the different arrivals due to

different modes are plane waves (i.e. R > D2/X), which !s not strictly true

in all numerical examples. This has no significant influence on the signal

because any beamforming network can be matched to either plane or non-

plane waves if the range is known. Slight differences might occur for the

interference (noise sources); however, the results show that there is no

significant influence on the performance of noise suppression systems due

to the assumption of plane modal waves.

1.8 Statistics

Signal and noise are assumed to be stationary, zero mean, gaussian

processes. The gaussian assumption is justified by the fact that each

signal is a sum of independent stochastic variables (central limit

theorem). It is true especially for high frequencies, since there is

usually a large number of modes. The zero-mean assumption can in practice

be verified by subtraction of the mean value. Sampling the sound field in

time (A/D) and space (array) leads to multivariable, complex, gaussian

distributions.

1.9 Zero Bandwidth

It is assumed throughout the report that the bandwidth of the sensor

channels is zero, i.e. received signals are sinusoid. This seems to be a

contradiction to the assumption of Sect. 1.6 (uncorrelated modes). It

means, however, in practice that the channel bandwidth of the sensor is

small compared with the inverse sound-travel time over the aperture of the

array. If the sampling rate is less than the relative bandwidth the phases

among modes may still be random.

15
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2 SIGNAL AND NOISE MODELS

2.1 Point Sources (see assumptions of Sects. 1.1 and 1.5)

The far field of a point source in free space is a plane wave described by

y(t) = a * ej(kr-wt), [Eq. 5]

where k = 21/X, a the source amplitude and r the distance between source

and receiver.

In the shallow-water sound-propagation channel the horizontal part of the

wave equation gives a superposition of plane waves (see Eq. 2) of the form

j(knr-wt)

Yn(t) =ane , [Eq. 6]

where an = amplitude of n-th mode

kn = the horizontal wavenumber = 2 /Xn

Now let us introduce the concept of a random phase among modes (see

assumption of Sect. 1.6):

Yn(t) a n ei(knr-wt) e [Eq. 7]

This system of equations may be written in matrix form

y(t) = ejWt A v , [Eq. 8]

where

Jknr
l ane n

0 ".
'aMe kMr

]7
17
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io
"I ~ ~and e l

v - e

e

The vector y contains all the modal plane waves arriving at distance r. The

covariance matrix among modes is

Y = E{yy*} = E{A v v* A*} = A V A* [Eq. 9]

where V. is the covariance matrix of the random part of the model:

V = E{v v*}.

2.2 Linear Array

At the i-th sensor of a linear array one gets a sum over modal plane

waves

M e3i)t eion eJknr eJknri 
[Eq. 10]xi  E, a n e e [Eq e0

n=1

where e ni is an additional phase term due to the distance r. between
1

the i-th sensor and the point r. Let us define a set of vectors

e -jklri

*-jk nr.i
mi = e kni [Eq. 11]

-j kMr i

e

i.e. vectors describing the array geometry, [Eq. 10] can be written

66x 

. A v eJ~ 

[Eq. 12]18

xi = A e - j t [E. 18
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Defining a matrix

M* - [Eq. 13]

we get the vector equation

x = M* y(t) = M* A v -e - j u t [Eq. 14]

x is now the vector of received signals at the outputs of a horizontal

array. For the particular case of an equally-spaced array one gets

ri = d • i • cosB, [Eq. 15]

where a is the bearing between source and array axis. In particular,
= 900 means broadside. Equation 14 now represents the model for point

sources used throughout this report. It is a product of a random part due

to randomness of the medium (v), a deterministic part of the sound field A,

which will be determined by the normal mode program, and a geometric part

M* describing the particular array.

The covariance matrix of received signals now becomes

R = E{x x*} = E{M* A v v* A* M} = M* A V A* M. [Eq. 16]

The matrix R is positive definite if

1) V is positive definite,

2) the rank of A is not less than N,

3) the rows of M* are linearly independent,

4) M>N, i.e. there are more arrivals than sensors, otherwise
it is positive semi-definite.

The rank of A is equal to M if none of the modal amplitudes on is zero.

Condition 3 is satisfied if all arrivals come from different directions,

which is verified if the modal wavenumbers kn are different. Condition 1

19
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is satisfied if v is a random vector. In particular, if on is uniformly

distributed, the products en em become uncorrelated, i.e.

V = I ,[Eq. 17]

being the unity matrix. In this case V is of course positive definite.
If, however, n = om for all n,m, one achieves

V = U, [Eq. 18]

which is a matrix containing only the value one

11l..

S 111 .. [Eq. 19]

This is the case of complete coherence among modes, and V, and hence R,

becomes positive-semi-definite, i.e. the received signals are deterministic.

The matrix R may become positive semidefinite even by another reason. At

broadside direction, i.e. B = 900 [Eq. 12] becomes

ri, = d.(i-Z).cos6 0,

so that the vectors Eli as defined in Eq. 10 become

e-jk r 0

jWt e-Jknro [Eq. 20]i=e jkMro

e

for all i. Assume, for simplicity, equal modal amplitudes, i.e. A= 1, and

uncorrelated modes, i.e. V = 1. Hence one gets

K = M* I I I M = M*M.

Since by Eq. 20

ml N, for all i,k, one gets

K= N= ... NU, [Eq. 21]

20
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which is again a dyadic like Eq. 20. Consequently, any point source

appears to the array as a coherent plane wave at broadside.

2.3 Numerical Examples

The modal amplitudes al.. aM and the modal wavenumbers kl.,.kM, which are

needed for calculation of the elements of M and A in Eq. 16, are computed

by the SNAP-program [12). As the normal-mode program is entirely

deterministic, some additional assumptions have to be made on the random

part of the covariance matrix K, i.e. the matrix V that contains the

normalized correlation values between modes. It is assumed throughout this

report that different modes are uncorrelated among each other, i.e. V = I

[assumption of Sect. 1.6]. Nevertheless, comparison between the cases of

total coherence and of no coherence between different arrivals can easily

be made by comparing results achieved for broadside direction with other

directions. At broadside (as pointed out in the previous chapter) any

point source appears to be a plane wave, independently of the coherence

among modes.

It is the major purpose of this report to find appropriate receiver

structures, i.e. to consider different kinds of array processors and vary

the system parameters (such as the number of hydrophones, spacing,

bandwidth etc.) rather than to discuss special characteristics of the

medium. Therefore, only a few typical examples are chosen in order to keep

the investigation within reasonable limits.

Two sound-speed profiles are considered. One of them (Fig. la) is almost

an isovelocity profile, as may happen under winter conditions. The other is

a typical summer profile (Fig. lb).

In addition, three frequencies are considered (200, 800, and 3200 Hz). So

six different outputs of the SNAP program are used as input for the signal

processing. Different assumptions are made for target and noise source:

noise sources are supposed to be located at 1 km from the array (which is

just enough to satisfy the far-field condition) and at 2 m depth, thus

modelling surface ships, in particular the towing ship of a towed-array

21
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a) SOUND SPEED (m/s)

1500 1520 1540 1560 1580 1600

uJ 50WAE

I m layer- 
SUBBOTTOM

b) SOUND SPEED (mis)
1500 1520 1540 1560 1580 1600

0~

50-

SUBBOTTOM

FIG. 1 SOUND-SPEED PROFILES

a) Winter (SVP1)

b) Summer (SVP2)
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sonar. The target is supposed to be a submarine at 50 m depth and 10 km

range. Therefore, 12 outputs of the SNAP program are required, which are

presented in Figs. 2 to 13. The plots show the modal amplitudes (in

logarithmic scale) versus the vertical angle of arrival at the array. The

vertical angle is defined by cosy = kn/ko , where ko = w/c(z), where c(z)

is the sound speed at the array depth.

A few details are worth special note. The summer profile causes the noise

energy to arrive only from a vertical angle interval between roughly 100

and 200. It can therefore be expected that at endfire direction some

detections may be made even though there is a noise source (e.g. towing

ship), provided that the energy distribution of the target covers the

vertical angle interval from 0' to 100. This may happen when the target is

at a range or depth different from that of the noise source, which is the

case in the examples chosen (compare Figs. 6 and 7).

Another point is that, at high frequencies, modes tend to form bunches, see

Fig. 13, for example. That means that the ratio between water depth and

wavelength is .uch that we are already at the border between mode and ray

theory.

2.4 Wide-Angle Noise

For wide-angle noise a simple, well-known model is used. Suppose a certain

bearing interval is given by the directional cosines um - uo ... um + Uo,

such that the interval is ?u . Let us assume that plane waves are

continuously and uniformly distributed over the interval. Hence a single

sensor receives the signal

um+u0

x(t) = f a(u)exp(j(kr-wt))du.

u uo
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The spatial correlation coefficient between the locations r and r + d

becomes

p(d) = E{xr(t) X

U +U
m o

E{ f a(u)oexp(j(k r-wt)du}
U -u
m o

*f a*(v) exp(j(k(r+d)-wt)dv}

= E{f a(u)du f a*(v)exp(-jkdv)dv}.

Assuming uncorrelated arrivals within the interval, i.e.

E{a(u)a*(v)} l u = v
u0

= 0 u v

one gets
Umn+U 0 ol

p(d) f- exp(-jkdv)dv
0 u M-u0

sin(kdu0 )
p(d) = 2 kdu 0  exp(jkdum) [Eq. 22]

For an equally spaced array the elements of the covariance matrix become

sin(k.d.(i-k).U)
= i 0  exp(-jkd(i-k)um) [Eq. 23]o~-) =  kd(ik)u°0

For um = 0 and uo = 1 one gets the particular case of isotropic noise.

2.5 White Noise

Spatially white noise is simply given by

R = 0 I [Eq. 24]

Pw being the white-noise power.
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2.6 Conclusions on Signal and Noise Models

a. The vertical spread of the signal energy of a point source in

shallow water appears as a horizontal spread projected on the horizontal

array. The horizontal spread is proportional to the cosine of the bearing,

e.g. it is equal to zero for broadside direction. The spread is asymmetrical.

The true position of the source is at the left edge of the signal spread

area for 0 < 900 and at the right edge for a > 900. Therefore, position

finding by looking for the energy maximum (beamformer) or energy minimum by

split-beam tecnnique is misleading for directions other than broadside.

b. The unsymmetrical spread is a property of the linear horizontal
array. A horizontal circular array will have a symmetric horizontal energy

spread.

c. Any broadside signal (random in time and space) appears to the

linear array as a coherent plane wave. At other directions the wavefront

appears to be random if the phases between modes are random. The wavefront

is non-plane in the mean. If modes are correlated among each other

(constant phase) the wavefront is non-plane and coherent.

I
I I.25
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3 THE OPTIMUM QUADRATIC PROCESSOR (OQP)

3.1 General Description

The quadratic processor discussed in this chapter is given by the quadratic

(or hermitian) form

k = x* K x > , [Eq. 25]

where x is the vector of input signals:

x=s+n or

= n.

If k exceeds a given threshold n, the hypothesis of "target plus noise" is

accepted, "noise alone" otherwise. For gaussian signal and noise the

quadratic form [Eq. 25] can be optimized in the likelihood ratio sense
(Bayes or Neyman-Pearson) by setting

K -= (P + _)-, [Eq. 26]

where = E{n n*} and P = E{s s*} are the covariance matrices of noise
and signal respectively. This processor, however, is not very useful for

practical applications because, due to the sum Q + P in Eq. 26, the
absolute power levels of noise and signal have to be known a priori. The

signal power is usually unknown because it depends on various unknown

parameters, such as target strength, range, aspect angle, and transmission
loss of the channel. Replacing Eq. 26 in Eq. 25 by

K =Q-1 P -1  [Eq. 27]

we get a processor that is insensitive to the signal power, provided that

Q and P are Toeplitz and hence the diagonal terms of _ and P are constant
(which is done for the horizontal detection problem, see the assumption of

Sect. 1.4). Any choice of the signal power (diagonal elements of P) is
equivalent to a constant factor on the detection threshold n in Eq. 25.

The processor (Eqs. 25 & 27) maximizes the signal-to-noise ratio for
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gaussian noise and arbitrary signal. It can, furthermore, be interpreted

as a small signal approximation of the likelihood-ratio processors (Eqs. 25

& 26).

For an array with N hydrophones and T time samples taken from each channel

the input signal vector will become

/(tl) /S(tl ) /(tl)
x(t2) S(t2) n(t2)

(t = + [Eq. 28]

where x(t.) contains the output signals of all sensors at time t. Some

simplification can be achieved by subjecting the time sequences of all

sensors to spectral analysis and perform filtering and detection in the

frequency domain (space/frequency representation) instead of applying the

processor [Eq. 25] to the time-space signal vector [Eq. 28]. The crucial

step in Eq. 27 is the matrix inversion even when using a special algorithm

for Toeplitz matrix inversion, e.g. [17), or replacing the inversion by

some adaptive algorithm, e.g. [6,7,8,18). After multichannel spectral

analysis Eq. 28 becomes

1(f2) s(f2 )  P_(f

W2) S~f2) (f I

x E / + [Eq. 29]
1(fF) \S(f F)/ nf )

which is the space/frequency representation of the received signals. Due

to the assumption of Sect. 1.4, signals of different frequencies are

uncorrelated, i.e.

E{x(f i) x*(fk)} = 0

E{x(f i ) x*(fk)} = O, i # k
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Therefore, covariance matrices of signal and noise become block-diagonal:

S(fl)
(f 2)  0

F)

and [Eq. 30]

I/

Q(f 2 ) 0

where

P(fi) = E{s(fi)§*(fi)}

Q(fi) = E{n(fi)n*(fi)}

Normalization of the submatrices gives

Q
-Qs('2) _.f(f 2) [Eq. 31]

~~Qf Ff

thus factorizing Q in a spatial and a frequency dependent part. The Qf(fi)
are simply

f(fi ) = q(fi) I, [Eq. 32]

q(fi) being the discrete power spectrum and I the unity matrix. The same

is valid of course for the signal:

= Ps PF and Pf(fi ) = p(fi) I.

Furthermore, P can be factorized in the following way:

P H HfH!f!*H [Eq. 33]
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where

P = H H and Pf HH= *

Ps(fi) = H (fi)H*(fi) and Pf(fi ) = Hf(fi)H (fi).

Now the detection rule [Eq. 25] can be written:

_X*9 -1-T1 -1-1f~~isTf_;

or, equivalently,

x_* Q-
1 9- 1 2fl [Eq. 34]

Equation 33 can be interpreted as follows: the received signal vector x* is

multiplied by the spatial part of the inverse covariance matrix

As _ and -I are hermitian and positive definite, they can be factorized

s KK_. [Eq. 35]

K is a spatial whitening filter. K* matches the subsequent processing to

the target signal s* contained in x*, which is now distorted by multiplica-

tion with K. qf contains just the inverse power spectrum of the noise
1/q(f i):I

-lqlQ\
I1/ =Fl/..

0 "IqF

Factorizing _Q similarly to Eq. 35 gives a product of two diagonal

matrices where the elements are given by

aI l Il [Eq. 36]qi ai at

The factors l/ai represent the transmission characteristic of a spectral

whitening filter, the I/at again match the subsequent processing to the

distortion of the signal s* achieved by the spectral whitening filter I/ai.
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The matrix Hs represents a generalized spatial matched filter (getieralized

beamformer) matched to a random wavefront s*. The coefficient hi contained

in the diagonal matrix

~h
l

* h2 " h F

H f,

"hF

represent the transmission characteristic of a filter matched to the power

spectrum of the signal. A block diagram of the processor [Eq. 34] is shown

in Fig. 14. The input signals are subjected first to spectral analysis by

means of a narrowband filter bank (NFB). After the NFB, spatial processing

is performed separately for each frequency. After whitening and matching

in space and time, all signal components are integrated incoherently.

As this report discusses only the spatial part of the detection problem,

just one branch of the processing scheme is considered (see narrowband

array processor box) in the following. The results, therefore, are

applicable directly to narrowband (i.e. active) systems, observing the

bandwidth constraints discussed in Ch. 8.

An appropriate measure for judging the performance of an array and the

subsequent array processor is the gain in signal-to-noise ratio at the

processor output compared with that at a single sensor. For the quadratic

processor the gain has been derived in 1

tr(F* P F) Pn [Eq. 37]

/tr(F* )

P n and Ps being the powers of noise and signal respectively.
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The matrix F describes the array processor and is defined by

K = F F*.

In particular, one gets for the optimum quadratic processor

-i H H -1

so that F = 1 H, which is the spatial optimum filter. The gain for the

optimum processor becomes

GopT = V tr(Q - P)Y.

3.2 Detection in the presence of Point-Shaped Interference

Figures 15 to 20 show the gain of the OQP in the presence of two inter-

fering sources (00 and 900). Different curves of each plot are due to

different numbers of hydrophones N. Different plots refer to different

(summer and winter) sound-speed profiles and to different frequencies (200,

800 and 3200 Hz). Additional white noise is assumed to be 20 dB below the

power level of the interfering sources. The spacing between sensors is

0.5A. Two interfering sources were chosen in order to demonstrate how the

vertical spread of signals and noise depends on bearing. The broadside

source appears in its real shape (i.e. point shaped) whereas at endfire the

total spread of the interfering source is perceived by the array.

Suppression of point sources has been treated repeatedly in literature.

The more interesting problem seems to be the suppression of interference

radiating from endfire direction. In practice this problem arises

particularly in towed arrays, where the towing ship is an endfire noise

source.

Comparing these six plots with one another, the general impression is that

there are no significant differences. The curves differ only in the area

of the endfire noise source according to the particular spatial energy

distribution due to the sound-speed prnfile and the frequency. For

instance, in Fig. 20 the noise source appears to be shifted by about 100 to

20' from above and below the array.

Therefore, under certain conditions, relatively high array gain can be

achieved in the direction of an interfering source, provided that the
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vertical energy distributions of target and interference are different.
This can happen if target and interference are at different depth. This

happens for instance in Fig. 20 (compare the vertical energy distribution

of target and interference Figs. 6 and 7). If, however, the energy of both

interference and signal are almost uniformly distributed between 00 and

+20' a broad gain minimum appears at endfire.

The plane horizontal parts denote the white-noise limitation. The maximum

achievable gain is Gmax = I/N + N (interference-to-noise ratio + white-

noise gain of the array). It is achieved in all examples and depends more or

less on the number of sensors, i.e. on the resolution of the array. The

minimum at 1800 is a "grating null", i.e. a periodic repetition of the

minimum at 00 entering the visible domain. This is a consequence of the

X/2-spacing assumed. For slightly smaller spacing the grating null will

vanish. As can be seen, the width and the depth of the grating null

depends on spacing and array length as well.

At broadside (90') a remaining gain of 3 dB is observed. This is the gain

achieved in the direction of one interfering source over the second one at

0'. It can be shown in general that in the presence of M interfering

sources with equal strength the gain in the direction of one of them

approaches M if the white-noise component goes to zero.

This idea applies also to an interfering source distribuLed over a certain

area. At any point inside the noisy area some gain is achieved over the

rest of it. Therefore the gain in the direction of a distributed noise

source will be higher than that in the direction of a point source.

However, there is still another effect that supports the detection per-

formance in the noisy area. The matrix H (generalized spatial beamformer)-si

provides spatial coherent integration of the signal, which is spread by the

channel as well. If the spatial signal structure is different from that of

the interference (as in Figs. 6 and 7) the gain in the interference

direction may increase with increasing array length, because the resolution

of the signal structure (i.e. approximation of the spatial covariance of

the signal by a finite number of sensors) from the noisy background

improves with increasing array length. Notice that at broadside the gain

is independent of the array length.

40
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Figure 21 shows a gain curve for N = 160 (One interfering source, 800 Hz,

winter sound-speed profile). Approaching broadside, a slight increase in

gain can be observed; the reason is simply that a point source at broadside

appears to the horizontal array always as a coherent plane wave. Therefore

the slight difference in gain between broadside and any other point in the

white-noise-limited area can be considered to be the loss due to uncorrelated

modes (Assumption of Sect. 1.7).

3.3 Wide-Angle Interference

Figures 22 to 26 show some examples for wide-angle interference as

described by Eq. 23. The example in Fig. 22 shows the array gain for

different numbers of sensors, N, and the interference uniformly distributed

over about 350 . Additional white noise is supposed to be 20 dB below the

interference level. Far away from the interference, the gain is limited by

the white noise, e.g. the curve for N = 10 approaches 30 dB (20 dB I/N +

10 dB white-noise array gain). Very close to the interference the gain

depends much more on the array length, i.e. the rectangular noise interval

can be better approximated by the array as the number of degrees of freedom

increases. However, for practice, even small arrays (e.g. N = 10) yield

satisfying aiscrimination between target and interference.

Figure 23 shows gain curves for a 20-hydrophone array for interference

areas of different widths. If the angle interval becomes 180' the noise is

isotropic. Fnr a X/2-spaced array, isotropic noise is uncorrelated because

the sinc-shaped spatial correlation function is sampled right at the zeros.

Therefore, for 1800, just the white-noise gain is achieved (e.g. 13 dB for

N = 20). For the other examples (110, 23', 60') the maximum achievable

gain (33 dB) is reached quite well outside the interference area.

Figures 24 and 25 show the gain for an array with 20 hydrophones spaced at

O.lX. By choosing the spacing smaller than 0.5X, isotropic noise is no

longer uncorrelated between sensors.

This promises some more gain over isotropic noise than just the white-noise

gain. In particular, the high correlation values of the main lobe of the

sin x/x function have to be taken into account. Clearly, the resolution of
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the array is much poorer (if N is kept constant); therefore the performance

in the vicinity of the interference is worse than before (see Fig. 23).

For the isotropic case (180') little improvement over the white-noise gain

can be observed, particularly at endfire and backfire (0' and 1800). This

is due to the fact that, for the geometry of a line array, isotropic noise

appears to be broadside rather than endfire (in particular, the spatial

correlation function is real, like that of a source at broadside).

Fiqure 26 shows curves for different oower ratios of directional to

omni noise.

3.4 Suboptimum Generalized Beamformers

The application of the OQP requires the a prziom, knowledge of the spatial

covariance matrix of the signal for designing the generalized beamformer

(or matrix matched filter) H . This knowledge is usually not available and

must be achieved somehow. One way is to run a modelling program with the

actual channel parameters. Alternatively, an auxiliary source may be used

for transmission of test signals. Signal covariance matrices have to be

estimated and stored for all ranges and bearings. This is a cumbersome

procedure and not feasible in practice, particularly not under changing

environmental conditions.

Another, simpler approach is to estimate the signal covariance matrix for

just one point of the sound field in order to get an idea of what kind of

signal spread has to be taken into account. For instance, in a towed array

sonar the towing ship noise is well suited as test signal.

The next step is to use the function

sin[ao0(i-k)] Jbo0(i-fl

Piz a 0 (i-,) e [Eq. 38]

to approximate the measured signal correlation by varying the factors a0

and bo, thus replacing the actual signal spread by an equivalent angle

interval with uniform energy distribution. The values a and b0 depend on

the following quantitites

u
a . = d .k 7 * I c o s F[ q

ho  d-kcosC0,
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where 0 is the bearing of the test source and u0 the angle interval. If

the position of the test source is unknown or not well known it will be

achieved by varying b0 such that the spatial frequency term in Eq. 38 gives

a best fit to the measured correlation function. Varying a° so that the

equivalent interval is a best fit to the signal spread gives an estimate

for the angle interval u0 if cos 0 is known. Now the equivalent angle

intervals can be calculated for other directions

an = d-k(i-R) 0 .Icos nI. [Eq. 40]
n 2

Replacing a0 and b0 in Eq. 38 by ai and bn = k(i-0)-d-cos n gives the

approximate signal covariance matrices for other directions, f3i"

This adaptive procedure may even be spared if some rough information about

the signal spread is available (e.g. by averaging over a large number of

different channels). In this case Eq. 38 can be directly applied for

computing the beamformer matrix Hs. Of course it may sometimes happen that

there is some mismatch between Hs derived from Eq. 38 and the actual signal

spread; which means that the angle interval, u0 , in Eq. 39 is chosen too

small or too large. The effect of the mismatch of a generalized beamformer

Hs to the width of a distributed signal is discussed in the following in

some detail.

Suppose that the signal energy is uniformly distributed over an interval u

that is the difference of two directional cosines

u = u1 - u2 .

The elements of the corresponding covariance matrix P have then the form

! sin(k 2(- .

Pz=k.d(i-Z) u

if u is centred around broadside, which we assume here for simplicity.

Consider a second matrix R with the elements

sin(d.k(i-d)v

r r d-k.(i-f) v

2
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so that v < u. Suppose that P describes the signal and R = H H* the

generalized beamformer. The signal power response is simply

Ps = E{tr(H* ss* H)}

= E{tr(H* P H)}

= tr(P R), [Eq. 41]

which is obviously the same if P and R change their roles, i.e. P = H H*

describes the beamformer and R the signal. The power response to white

noise is

P N = vtr(H* I H)2 = /tr(R) or

P P = V -r2
WN

If v < u one achieves tr p2 < tr R2 and

PP < R

WN A W

The white-noise gain becomes

pR
GR= P s
W PR

GP P sWNP

p

Hence, we can conclude that
RP

Gw < GW

In other words, if there is a mismatch between the width of a generalized

beamformer (MMF) and a signal distributed over a certain angle interval the

signal power is independent of whether the beam is too narrow or to broad

by a certain amount. The narrower beam however becomes more sensitive to

white noise; therefore the white noise gain is greater for the broader beam

than for the narrower one.
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3.5 Conclusions on the Optimum Quadratic Processor

a. The results achieved by application of the optimum quadratic

processor (OQP) to horizontal line arrays in shallow water have shown that,

under the optimistic assumptions listed in Ch. 1. there is basically no

significant limitation on detection performance due to the mcdim if

additional white noise is taken into consideration. The white noise is the

major limiting component outside the interference area. The array gain is

almost independent of the channel parameters (soun?-, peed profile, depth of

water, source, receiver, frequency).

b. As the matrix matched filter H (generalized beamformer)

integrates all different arrivals due to one signal source out of the noisy

background, the gain in the direction of an endfire noise source becomes

greater than the gain in the direction of a noise source at broadside,

which in particular is completely independent of the array length.

c. The OQP may be used for small arrays (N not greater thdn 10 to 20)

and mainly in active systems where pauses between pings can be used for

signal-free updating of the inverse noise covariance matrix. As the matrix

is Toeplitz (assumption of Sect. 1.3) the Levinson-algorithm may be used

for efficient matrix inversion. The implementation of any matrix inversion

process on a special-purpose, low-precision computer will involve accuracy

problems if Q be(omes ill-conditioned. This happens particularly where strong

sources are radiating from broadside. With increasing order of Q (i.e. N)

the accuracy problems become more and more serious. The implementation of

the optimum generalized beamformer requires the exact knowledge of the

vertical signal distribution. This knowledge is not available and has to

be replaced by some prediction (e.g. running a modelling program, assuming

an equivalent angle interval with uniform energy distribution). Both the

matrix inversion and the generalized beamformer involve a considerable

number of arithmetic operations. Therefore, in the subsequent discussions

on suboptimum systems, the OQP will be uspd for comparison rather than

being considered for application.

d. The generalized beamformer (MMF) may be approximated by assuming

the signal to be uniformly distributed over a certein angle interval, thus

finding a suboptimum quadratic beamformer that is independent of actual
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channel parameters (e.g. sound-speed profile). If there are doubts about

the actual width of the spread signal the width of the generalized

beamformer should be made a bit too large rather than too narrow. This
kind of approximation is just some kind of defocussing to broaden the beam

w.ithout degrading the signal-to-noise ratio (which happens if defocussing

is done by shading). The suboptimum quadratic beamformer looks for the

energy maximum rather than making use of any knowledge about the spatial

distribution of the signal, thus leading to an offset in bearing for all

directions other than broadside.

e. Degradation of the array gain due to incoherence among modes

becomes significant only for array lengths greater than roughly 0OX.
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4 THE OPTIMUM LINEAR PROCESSOR (OLP)

4.1 Introductory

Any linear processor is defined by the scalar product

Re>x*hl < decision < target + noise [Eq. 42]noise

If both the noise and the signal are random, h can be optimized such that

the signal-to-noise ratio at the output is maximum, i.e.

h*P h
max [Eq. 43]
h h

which is satisfied by h being the eigenvector belonging to the maximum

eigenvalue of the generalized eigenvalue problim

(P - X Q)h = 0. [Eq. 44]

Equation 42 is the Rayleigh-quotient of the generalized eigenvalue problem

(Eq. 44). If q is regular (which occurs for spatially random noise) Eq. 44

can be written

(Q-1 P - X I)h = 0, [Eq. 45]

thus reducing it to the ordinary eigenvalue problem. As can be seen, the

solution for the first eigenvalue and the corresponding eigenvector

requires a matrix inversion, a matrix product, and the solution of the

eigenvalue problem, i.e. many more arithmetic operations than are needed for

the calculation of the OQP. As the OQP is, however, optimum in the sense

of the same criterion used here for optimization, its performance will always

be equal or superior to any linear processor. Therefore the optimization

procedure outlined above is not useful and will not be discussed further.

If, however, the target signal is spatially coherent, i.e. has a coherent

wavefront, it can simply be described by a vector s instead of a covariance

matrix as before. In this case Eq. 43 can be optimized by several criteria

53i



SACLANTCEN SR-43

(LR-test, maximum signal-to-noise ratio, maximum detection index, see [Ti)

by the choice

h = q-Ib , [Eq. 46]

which means again whitening and matching in frequency and space. Figure 27

shows the simple block diagram of the spatial part of a general linear

array processor. In the optimum case the noise-suppression box contains

the matrix Q-. Notice that the generalized beamformer matrix in Fig. 14,

defined by P = H H*, has been replaced by the vector s, so that P = s s* is

a dyadic. Therefore the detection performance of the OLP in shallow water

will be influenced by the simplification of the beamforming, i.e. the

mismatch of the beamforming vector b to the actual random wavefront given

by a positive, definite, signal covariance matrix P = E{s s*}.

For the linear processor, the gain in signal-to-noise ratio of an array

compared with a single omnidirectional sensor is

h*Ph P
G = - h [Eq. 47]G= h* Q h P s

The following two sections evaluate a few examples of application of the

OLP. Following the conclusion of Ch. 3, only one set of channel parameters

is chosen (Figs. 10 and 11) for all numerical examples given in the rest

of the report.

4.2 Numerical Results

Figure 28 and 29 show a comparison of the OQP and the OLP for the same

noise configuration as in Ch. 3. For small arrays (e.g. lOX aperture, Fig. 28)

almost no difference in performance can be observed. There is just a

little deviation between the curves of OQP and OLP in the direction of the

endfire noise source where interference and signal energy are distributed

over about 200. Here the matrix matched filter (MMF) yields some more

individual integration of the signal energy because it contains the

spatial amplitude distribution of the signal; the OLP, on the other hand,

contains only a conventional beamformer, which sums energy without

distinguishing between signal and interference.
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For large arrays (80X aperture in Fig. 29) the mismatch between the

conventional beamformer in the OLP and the spatial signal spread becomes

significant in that the beamwidth becomes narrower than the signal spread.

Therefore signal energy is lost. There is, however, a second effect:

tet signal is always spread between the true bearing and a certain angle

t-w,rds broadside such that there is usually an offset between the energy

r-'w' and the same position. It was assumed in both the examples that

, :. ,, of the OLP points always in the true direction of the target.

t(utntly, there is some offset between beam direction and energy

,iiui:, which becomes significant for narrow beamwidth.

7here is only one point where the gains of the OLP and OQP coincide

e-(dt]f. At broadside the signal covariance matrix reduces to a dyadic:

P '40 s s*;therefore, the gain (e.g. Eq. 37) becomes

tr(H* P H) Pn * -1  Q -1 Pn

G~OQp tr(H* Q H)2 1P s Q ljg(-s) 2  Ps

5s* -s P n
- - Ps [Eq. 48]

For the OLP we get

s_* -ls s* s-Is p n
OLP s* Q-I QQ-i s  P s - s Ps

Figure 30 shows the application of the OLP to wide angle noise. The

conditions are the same as in Fig. 23. The performances of OQP and OLP are

almost identical. Some loss in gain may be achieved only for large arrays.

4.3 Conclusions on the Optimum Linear Processor

a. For small arrda 'less than 20X aperture) the OLP gives almost the

same gain as the OQP in the white-noise-limited area.
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b. For large arrays, losses in gain occur because the beam of the OLP

becomes narrower than the signal spread.

c. There is an offset between energy maximum and tone target position

due to the spatial spread; this causes some errors in the target bearing

when searching with narrow beams. If the spread is approximately known,

a rough correction of the bearings of detected targets can be made by

adding (for angles < 900) or subtracting (>900) about half the angle

interval of signal spread.

x2  NOISE bSUPPRESSION

FIG. 27 LINEAR ARRAY PROCESSOR
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5. SHADING METHODS

5.1 General Remarks

Shading methods are well-known means for reducing the sidelobe level of

an array pattern. There are methods for minimizing the beamwidth at a

given sidelobe level (Dolph-Tchebycheff). Binomial shading (shading

coefficients proportional to binomial coefficients) yield the narrowest,

with a total absence of sidelobes. Uniform shading (conventional

beamforming) is optimum for detecting deterministic signals (i.e. coherent

wavefronts) in white noise or, equivalently, for omnidirectional noise and

X/2 spacing between sensors. Any kind of shading method is simply achieved

by replacing T-l in Eq. 46 and in the noise suppression box in Fig. 27 by a

diagonal matrix Z containing the shading coefficients in the main diagonal:

9= Re{x* Z b} < n decision target + noisenoise [q 0

Basically,the coefficients of Z can be optimized in the sense of maximum

signal-to-noise ratio in the same way as mentioned in Ch. 3. Equation 50

can be written in the following form

9= {x* B zI , [Eq. 50a]

where z is a vector of shading coefficients and B a diagonal matrix that

contains the beamformer coefficients. Now we have an optimization problem

for the vector of shading coefficients

z* B* P B z
max [Eq. 51]
z z* B* Bz [

which is solved by choosing z to be the eigenvector corresponding to the

maximum eigenvalue of the generalized eigenvalue problem

B*(P - XQ) B z = 0. [Eq. 52]

Therefore, in general, optimum shading depends on P and Qand, hence, is an
adaptive process.
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Dolph-Tchebcheff optimization could basically be applied by pre-assigning

the sidelobe level so that the array-power response to a directional source

in the maximum sidelobe is equal to the white-noise power level. As the

interference-to-noise ratio has to be known, this optimization is adaptive

as well. In the limit, i.:. for the white-noise level approaching zero,

the method will approach binomial shading (no sidelobes).

Instead of very complicated optimization procedures, three simple and well-

known shading methods (cosine, binomial, uniform) are considered in the

following.

5.2 Binomial Shading (B/N)

Figure 31 shows the gain for different array lengths in the presence of one

interfering source at 0' and additional white noise 20 dB below the

interference level. For arrays greater than N = 40 the subroutine

generating the binomial coefficients went out of range of the 32-bit words

of the computer used.

There is a completely flat white-noise-limited area around broadside, which

is due to the fact that there are no sidelobes at all. However, the main

beam is broadened so that there is a quite broad area of main-lobe

interference due to the source at 0° and a correspondingly broad grating

null entering the visible range from 1800. Another effect of the

broadened beam is that even in the white-noise-limited area, i.e. outside

the mainlobe interference, there are significant losses compared with the optimum

(interference/noise-ratio + N), which are indicated by small horizontal

lines on the left.

5.3 Cosine Shading

The shading coefficients have been chosen to be

an = 0.5 - 0.5 cos(27r.(n-0.5)/N). n = I...N, N even.
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Figure 32 shows the gain of different lengths for the same noise configu-

ration as before. For small arrays a slight ripple due to some remaining

sidelobes can be observed in the white-noise-limited area. For large

arrays the white-noise-limited area is quite flat, which is due to the fact

that the interfering source (which appears to be distributed between 0' and

200) does some averaging over several sidelobes when moved over the array

pattern. From N = 10 to N = 80, doubling of the aperture gives an

additional gain of about 3 dB, which is achieved also by optimum processors,

see Fig. 16. A comparison with the optimum gain levels on the left shows

that about 3 dB are lost between optimum and cosine-shaded arrays over a

broad area around broadside. It can be stated roughly that a 40X cosine-

shaded array has about the same gain as a 20X optimum array. For smaller

arrays the mainlobe interference becomes significant at'endfire and

backfire directions. For apertures much larger than 40X the gain is

proportional to the aperture only at broadside, where the signal appears

to the horizontal array as a discrete line. Apart from broadside, the

mismatch between the conventional beamformer and the spatial spread of the

signal leads to additional loss (compare with Ch. 4).

The grating null on the right side can be avoided by somewhat smaller

spacing of the sensors. Figure 33 shows three curves for an array with 20

sensors spaced at 0.1, 0.3, and 0.5X. As can be seen, the ambiguity is

removed at the cost of poor resolution and, hence, more main-lobe inter-

ference.

5.4 Comparison of Shading with OQP

Figures 34 and 35 plot the array gain over one and two noise sources

respectively (each of them 20 dB above the white-noise level). As can be

seen, the cosine shading is by far the best approximation to the OQP in

that the gain in the white-noise-limited area is just about 3 dB below the

OQP curve and the area of the main-lobe interference is muich smaller than

with binomial shading. Conventional beamforming leads to the narrowest

beamwidth and thus to the narrowest main-lobe interference zones. It

suffers, however, from the hign sidelobe level.
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The example in Figs. 36, 37 and 38 show a situation where five noise

sources are distributed on a half circle, or, equivalently, nine sources on

a full circle. The results confirm once again what has been found before.

For small arrays (lOX-aperture in Fig. 36) cosine shading does not work
* well, especially with a high interference/noise ratio (40 dB in Fig. 37).

* For the 40A array, however, reasonable approximation of the OQP is

* achieved. This also holds for higher interference/noise ratios.

As shown in Fig. 39, cosine shading even works well for smaller arrays if

the interference is distributed over a wide angle.

Other kinds of shading [1.91 may be used as well, most of them having a

lower side-lobe level at the cost of a larger beamwidth, which leads to

larger optimum array length.

5.5 Conclusions on Shading Methods

a. Optimum shading depends on the spatial noise distributions and

leads, therefore, to adaptive methods that involve complicated arithmetic

operations but are still inferior to the OQP.

b. Binomial shading suffers seriously from main-lobe interference and

also from loss in signal gain due to the broadening of the beam outside the

main lobe interference.

c. As is well kno'wn, conventional beamforming should be applied only
if the noise is isotropic or white.

d. Cosine shaded is recommiended for array lengths of about 50X.

Compared with the QQP, the loss for the same aperture is about 3 dB. For

smaller arrays the performance is degraded heavily by main-lobe interference.
For larger arrays (>BOX) the beamwidth becomes narrower than the spatial
signal spread, thus causing additional loss in gain. For smaller arrays

the influence of the main-lobe interference becomes significant.
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6 NULL-STEERING METHOD.

6.1 General Description

In many cases the direction of a noise source is known a prori. For

instance, the direction of the towing ship in a towed array sonai is always

known. The directions of other ships might be known by means of radar or

optical position finding. If this is so, suppression of point-shaped

interference may be performed by steering nulls, either of the array

pattern or of the individual sensor pattern, in the direction of the

interfering sources. Directive sensor patterns (dipole or cardioide

patterns) can easily be formed by appropriate combination of adjacent

sensors. Both kinds of null-steering are suboptimum because the widths of

the nulls are fixed. Adaptive processors like the OQP or the OLP adapt to

the individual spatial distribution of the interference and noise, which

usually depends on the medium and on the cosine of the bearing. Optimum

adaptive processors attempt to achieve an optimum compromise between noise

reduction and signal gain rather than to form an accurate null in the

direction of the interference without considering the target direction.

A null in the array pattern is achieved by transforming the received data

by a so-callcd projection matrix, defined by

c c*
C -I [Eq. 53]

if only one null is formed. The vector c describes the direction of the

null. Clearly, the product

c c*
C c = (I- - ) C = , [Eq. 54]

i.e. the array becomes "blind" for the direction c. For more than one null

a multiple constraint matrix is given by

C= I - H(H* H)"I H* [Eq. 55]
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such that C H 0. Notice that the rank of H must be less than the order of

C, otherwise Eq. 55 can be written

C = I - H H-1 H* - I H* = 0 for arbitrary H, [Eq. 55a]

which means that the array becomes blind for any direction!

Dipole or cardioide patterns may be achieved by combining adjacent sensor

outputs so that arrivals from a certain direction are subtracted from one

another. The corresponding noise suppression matrix is given byI0
-a I

-a [Eq. 56]

0 -a 0

where a denotes the phase factor corresponding to the interference

direction. Notice that one sensor is lost. This can be avoided by

combining the n th sensor with the n-2th :

1 
0

-a1

D -a -b • [Eq. 57]

1 0

0 -a 1

The schemes of Eqs. 56 or 57 may be generalized to more than one inter-

fering source by cascading several matrices of the same forms, e.g.

- 0 b 1 0
D= -b. I [Eq. 58]

0 -b0

where a and b define the directions of two interfering sources.
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6.2 Numerical Results

The following results are achieved by replacing in Eq. 46 by C or D and
evaluating Eq. 47. Figure 40 shows gain curves for the OQP, the dipole
processor (Eq. 56), and null-steering in the array pattern (Eq. 53),

for an array with 20 hydrophones in the presence of an interfering source

at endfire direction. It can be seen that the DIP-processor gives a rather

good approximation to the performance of the OQP over a large bearing

interval (300 to 1500). Only very close to the interfering source does

some loss have to be taken into account. The same is valid for the grating

null at 1800 bearing. The array considered in this example was supposed to

have 0.5X spacing. Therefore, application of the transform of Eq. 56 leads to
dipole sensor patterns, so that there is a second null at 1800 that reduces

the signal response of the sensors -in that direction.

Reducing the spacing results in individual cardioide patterns rather than

dipole patterns. Figure 41 shows the gain for different spacings

(d/X = 0.1, 0.3, 0.5) from which it is seen that the optimum spacing is

obviously about 0.3X. In this case the sensor patterns have a minimum

instead of a deep null at 1800; in addition, the grating null at 1800 is

removed. The main lobe interference in the vicinity of the interfering

source has not increased significantly.

Steering a null of the array pattern does not work sufficiently well in the

example of Fig. 40. Obviously the null is not broad enough to cope with

the spatial spread of the endfire interference. For very small arrays

(e.g. N = 5, as shown in Fig. 42), however, the width of the null is broad

enough to suppress the interference sufficiently. For very large arrays

(e.g. N = 160, as shown in Fig. 43) the loss compared with the OQP becomes

even higher than for N =20, as expected. But now even the DIP-processor

is significantly inferior to the OQP, except for 900. This indicates that

the DIP-processor works well enough as far as noise suppression is

concerned. The loss in gain is again due to the mismatch of the subsequent
beamformer to the signal spread. if the interference is at 900 (Fig. 44)

both methods (dipole, null steering) work quite well. Null steering is now

slightly superior, because there is no sign~al spread at broadside.
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Figure 45 shows the result of a two-stage dipole processor (see Eq. 58)

applied for suppression of two interfering sources (00 and 90'). The

performance is rather poor. In comparison with the OQP, 10 dB and more are

lost. The reason is that cascading of dipole processor matrices leads to

products of dipole patterns, as shown qualitatively by the hatched areas in

the upper part of Fig. 45. This obviously causes reduction of target

signal power.

6.3 Conclusions on Null Steerinq

a. Dipole or cardioide patterns achieved by subtracting signals of

neighbouring sensors with respect to the interference direction yield

almost optimum noise suppression for apertures smaller than 40X, because

the width of the null in the sensor pattern copes well with the spatial

signal spread. It is useful, in particular, if there is only one noise

source with known direction (e.g. towing ship noise). In this case 0.3X

spacing is appropriate [trade-off between too great a width of the null in

the interference direction and a minimum (loss of signal power) in the

opposite direction].

b. Null steering in the array pattern leads to much narrower nulls

than dipoles. It is therefore useful only for interference coming from

about broadside or for very small arrays.

c. Cascading of dipole processors for suppression of more than one

noise source does not work well due to the reduction of the signal power by

the multiplication of different dipole patterns with one another.

d. Application of nonadaptive null-steering methods requires

additional information about the noise field, which may be obtained by

radar. Therefore, these methods are restricted to the radar range

(typically 15 miles).
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7 PRE-TRANSFORM ARRAY PROCESSORS

7.1 Introductory

A'l array processors treated in this chapter differ from the previous ones

in that the received signals are first subjected to a pre-transform

y = T x = T(s + n) . [Eq. 59]

The covariance matrices of signal and noise become

S = E{T s s* T*} = T P T*- [Eq. 60]

N = E{T n n* T*} = T q T*

The quadratic array processor after the pre-transform becomes

k x* T* N- S N-I T x Z n [Eq. 61]

and the optimum linear pre-transform processor

z Re{x* T* N-I T b} . [Eq. 62]

As far as T is a regular square matrix, Eq. 61 is identical to Eqs. 25

and 27 and Eq. 62 is identical to Eqs. 42 and 45, because

( T Q T * ) - I 1 : ( T * -  1 -7 T -- l )

If, for instance, T contains the eigenvectors of the covariance matrix of

input signals E{x x*} (Karhunen-Loeve transform), the resulting covariance

matrix E{T x x* T*} becomes diagonal, thus obtaining a spectral decomposi-

tion in space or, in other words, representing the sound field by N fictive

point sources. The eigenvalues denote the source strengths, the eigen-

vectors the directions. In this case optimum noise suppression reduces to

division of the received signal by the spatial power spectrum. However, the

spectral decomposition is a quite cumbersome procedure. It has been pointed

out in (1] that even a suboptimum iterative approach, considering just the

strongest eigenvalues of the noise covariance matrix, does not lead to a

simple algorithm for real-time processing.

7!- 
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The transforms considered in the following are LxN-matrices, where L<N.

The idea is to reduce the order of the signal vector space such that

subsequent processing (pre-whitening and matching) can be carried out in

the vector space of low order. Therefore, T has to be chosen so that

L<<N, in order to spare arithmetic operations.

L is sufficiently large for adaptive noise suppression,
i.e. L > number of interfering sources.

No target energy is lost.

The third requirement can be satisfied by steering one or more beams in the

hypothetical target direction. For large arrays a bunch of over-lapping

beams should be used to cover the whole area of spatial signal spread.

Therefore, in general, the matrix T will have the following form

T ( beamformers [Eq. 63]
noise estimation

That means that all methods discussed below differ basically from all

previous ones in that the noise suppression is carried out after the

beamforming, instead of before. For example,

T (11 b [Eq. 64]

1

represents a beamformer and, in addition, L-1 auxiliary sensors for

estimating the noise in the beam. Consequently, the covariance matrix

N = T Q 1*

contains the correlation coefficients between auxiliary sensors and beam.

For another choice of auxiliary sensors one may get

T b* 1( Eq. 65]
0
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In passive systems, where no target-signal free-noise estimates are

available, auxiliary difference patterns may be formed with the null

pointing in the hypothetical target direction, e.g.

b*
T [Eq. 66]

I -b*1
0 -b 0

Instead of difference sensor patterns some kind of difference beam patterns

could be used

b*
T .[Eq. 67]

b*(l)
(b~* (2) /

The b*(i) have to be chosen such that they yield a null in the hypothetical

target direction, i.e. they have to be orthogonal to the beamformer b:

b*(i)b = 0 i.

Such orthogonal vectors can be produced easily by multiplying the

coefficients of b with orthogonal functions, such as Walsh functions.

Finally, a multibeam transform is given by

T ,[Eq. 68]

where the b are beams pointing in different directions. Since in sonar

systems all beams are usually pre-formed, the use of multiple beams does

not mean an additional expense as it does, for example, in radar systems.

The question still arises of which beams should be taken. One possibility

is to steer sorle beams in the target direction (slightly overlapping) and
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steer one beam on each interfering source. This has been proved to be

almost optimum for the use in a multiple beam-phased array radar [:'].

The disadvantage is that the positions of the interference have to be known

. '! i.e. by some other means, such as radar. Another possibility is

to centre all beams orthogonally overlapping around the hypothetical target

direction and to make noise suppression in the "signal-beam domain".

Orthogonal overlapping guarantees well-conditioned covariance matrices,

which is important for numerical reasons.

The gains of the processors of Eqs. 61 and 62 are found by replacing Q by N

and P by S in Eqs. 37 and 47:

tr(F* S F) Pn [Eq. 69]
GQp =p

tr(F* N F)
2  s

where F N-I H [Eq. 70]

and S = H H*. [Eq. 71]

k* N-I S N-Ik P k* N I S N-1 k P
G [Eq. 72]

GLp k* N-1 N N-k s k* N-1 k " s

where k = T b denotes the beamformer vector after the pre-transform.

Replacing k by a unity vector e causes only the beamformer output of the

pre-transform to be considered, e.g. for the pre-transform of Eq. 64 the unity

vector

1

rl = + j 0 [Eq. 73]

is chosen. The contributions of the auxiliary sensors or beams are

omitted.

7.2 Calculation of the Generalized Beamformer

The role of optimum and suboptimum quadratic beamformers has been discussed

in Ch. 3. The generalized beamformer is a matrix H defined by

L = H H* , [Eq. 74]
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where L may be the signal covariance P or the transformed matrix

S = T P T*. If P is not known, it has to be replaced by some matrix G that

describes an equivalent angle interval with uniform energy distribution as

an approximation for the actual signal spread. For the gain calculation in

Eqs. 37 and 47, the factorization of Eq. 74 is not necessary. The gain formula

can be rewritten as follows:

tr(F* P F) P

tr(F* F) 2

tr(P F F*) P tr(P- H H* P

P 1 H* -  n

tr(Q F F*)2  s tr(§§-1 H* )

That means that for the gain calculation the unfactored matrix, H H* P or

H H* = G respectively, is needed. The same is true of course for the

transformed matrix T H H* T* in Eq. 69.

One is, however, faced with the problem of factorization in order to design

the quadratic array processor. If a modelling program is run in order to

get some i r <:,< knowledge about the signal covariance matrix P, the

beamformer matrix H is given explicitly without factorization by

H = M* A W

which follows direct from Eq. 17. W is defined by

V = W W*,

i.e. the factorized normalized covariance matrix among modes. This

factorization has to be carried out only once. In the trivial case of

uncorrelated modes one has

W I.

M* and A are given by the modelling program.

If, however, the signal covariance matrix is given, e.g. by measurement or

by assuming an equivalent angle interval with uniform energy distribution,

the factorization must be carried out by means of the Cholesky-algorithm,

see DiIl, for example. Some numerical problems will arise for cos = 0,
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i.e. broadside direction. Corresponding to Eq. 20 the covariance matrix

becomes singular, which means that the factorization can no longer be

carried out. One way to avoid that is to add some "artificial noise", which

means adding a certain small number, 6, to the elements of the main

diagonal of the covariance matrix

4 U + 6)  i = I...N [Eq. 75]

If # is small the influence on the array gain is negligible.

An alternative approach is to use the Cholesky-algorithm until break-off.

The algorithm is given by

i-Irk=a - z r )/r i
rik (aik j=l ji rk ii

i : I...N
j a L r-. k = i...N, [Eq. 76]

where aik are the elements of the original matrix and r ik the elements of

the triangular matrix after factorization. The algorithm breaks off if the

elements rii become smaller than the arithmetic accuracy used. To

illustrate this let us consider the case of a 3 x 3 Toeplitz-matrix:

I a b

A a 1 a
b a I

After factorization the result is

1 a b

2 a 2 1-b2

O 0 1-b2 - all-b2 )
1-a2

The algorithm calculates the values of the first row column by column, then

the second row, and so on. If a approaches +1 or -l the value

r22 =a becomes 0 and the algorithm breaks off when calculating r23.

I
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If a , 1, the algorithm breaks off if b = I or b = 2a-l. In this case

the first two rows are calculated correctly and the rest have to be

omitted. If ia = 1, one finishes up just with a vector (first row of A),

5) theft the Toeplitz-matrix R* R is just a dyadic. This happens at

broadside, as pointed out above. That means that the result of the

interrupted factorization is the conventional beamformer, which is in fact

optiium at broadside.

Fhe only point to be observed is that after break-off the rest of the

matrix has to be zero. As the Cholesky decomposition is usually carried

out "in place" the algorithm has to be modified such that after break-off

the part of the matrix not yet computed is made zero.

7.j Nonadaptive Null-steering

A pre-transform array processor involving nonadaptive nullsteering can be

achieved just by replacing N in Eq. 69 by a constraint matrix of the

kind given by Eqs. 53 and 55. After the pre-transform the interference

direction is given by T c. Therefore, the projection matrix in the reduced

vector space becomes

T c c* T*
C = I- [Eq. 77]

c* T* T c

or, with more than one interfering source,

C = I - I H(H* T* T* H)-I H* T* , [Eq. 78]

so that C T H = 0.

The corresponding quadratic array processor becomes

- x* T* C* S C T x < rn [Eq. 79]

and the linear one

Re{x* T* C T bi < , [Eq. 80]

However, this kind of processing leads to similar results to those achieved

by processors using the noise-suppression matrices of Eqs. 53 or 54,
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because the constraint matrices of Eqs. 77 and 78 do the same as Eqs. 53 and

54, i.e. move a null of the array pattern in the direction of the inter-

ference. The only difference is that for large arrays less arithmetic

operations are required to implement Eq. 77 than Eq. 53. Nevertheless,

steering of nulls in the array pattern does not work well enough for

bearing angles close to endfire and will, therefore, not be discussed

further.

-.4 The Choice of the Pre-transform

Figures 46 to 49 present some numerical results on arra" gain to show the

performance of different kinds of pre-transform array processors. Figures

46 and 47 show two different choices of auxiliary sensors. In Fig. 46 the

sensors are chosen (1, 4, 7) to be widely but equally spaced, (see Eq. 65).

In Fig. 46, the 1, 2, 3 sensor are chosen (see Eq. 64). In both cases many

auxiliary sensors are required in order to approximate the performance of

the optimum quadratic processor (OQP). It is not even possible to make a

statement on whether it is better to use closely or widely spaced auxiliary

sensors. For two, three, or four auxiliary sensors obviously small spacing

is advantageous, for six auxiliary sensors, however, large spacing seems to

be better. In any case, except for six widely spaced auxiliary sensors,

all curves show more or less some kind of ripple due to the sidelobes of

the beam when moved over the interfering sources. The reason is that for

the auxiliary sensors the interference-to-noise ratio is always constant

for all directions, whereas in the main beam it changes with bearing

according to the sidelobe pattern.

For the simple example of two sensors, it can be shown that the array

becomes maximum if the interference-to-noise ratio in both channels is

equal. The signals are x, = ql + n1 and x2 = q2 + n2' where q is the

interference, n the noise portion, and the indices refer to the corresponding

channels. The covariance matrix becomes

QI+NI QI2 1

X E{x x*}
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The inverse becomes

detX \-Q 1 2 Q+N)

Q1 and Q2 are the interference powers in channel 1 and 2, N1 and N2 are the

noise powers, and is the crosscorrelation term E{xlx} } = Etqlq*:.

Let us consider, for convenience, the array gain in endfire direction in

the presence of a broadside interference, and let us introduce the

conditions

Q2 + N2 
= 1

Q, + N1 = 1

N0 = N1 + N2.

The inverse covariance matrix is
X-I l 1  -QI2)

det X ( -Q1 2 I

The array gain in endfire direction is, for a >,/2-spaced array (see Eq. 49),

GPn

which becomes, for this example,

T Q12) ( 2(l + Q1 2)SG = (1 IQ) -I

The crosscorrelation coefficient is simply

Q12= /' -N N1  /1 - N2

so that the gain becomes

G = 2(1 + V(1 N )(1 N2 ) ).
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For example, if there is no interference, we get N 1  N2  1 I and G = 2,

which is the white noise gain for two sensors. For N1, N2 < 1 let us write

N2 = N0 - N1 in order to keep the total power constant:

G = 2(l + v/ ( - NI)(l-(N 0 - N1 ) ),

which becomes maximum if N1 = NO = N2 . Therefore, the gain of an array

is maximum if (for a given total interference-to-noise ratio) the

interference-to-noise ratios of all channels are the same. This is

verified for adaptive processors like the OQP or OLP that perform inter-

ference rejection before beamforming. The interpretation of the inverse

covariance matrix between sensors is that arbitrary N-l sensors are used to

estimate the interference in the remaining channel and to subtract it. In

this case, of course, all channels have the same interference-to-noise

ratio.

Consequently, for a pre-transform-type processor (i.e. interference re-

jection after beamforming) the auxiliary channels should be chosen such

that the interference-to-noise ratio is about the same as in the main beam,

i.e. the auxiliary channels have about the same beam pattern as the main

beam. Of course, they must not be exactly the same, otherwise the rows of

the pre-transform matrix T become linearly dependent, causing all transformed

matrices (e.g. N = T q T*) to be singular.

Consequently, the best choice is a bunch of orthogonally overlapping beams

centred around the beam looking in the hypothetical target direction. The

same principle has proved to be quite efficient for adaptive clutter

suppression in step-scan radars [22]. Orthogonal overlap of beams

guarantees well-conditioned covariance matrices as far as the pre-transform

is concerned. Figure 48 shows the same example as before but for the

multibeam processor (MBP) described above. The performance is significantly

better than the results achieved in the two previous examples. In

particular, almost no sidelobe ripple can be observed.

The multibeam processor described above has another property that is quite

useful for application in shallow water. If the signal energy is spread in

space, it has to be spatially integrated. If the number of orthogonally
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overlapping beams is such that the whole area of the signal is covered,

appropriate integration (such as the quadratic pre-transform processors

of Eqs. 59 and 60) of the beam outputs can be expected to be an almost

optimum generalized beamformer. Considering furthermore the good inter-

ference rejection properties discussed above, the quadratic multibeam

processor promises to be an efficient means for target detection by large

arrays.

As an example, Fig. 49 shows the quadratic MBP applied to an array with 160

sensors (80X aperture). As can be seen, for NB = 5 a remarkable approxi-

mation to the OQP is achieved. For NB = 3 somp loss in gain is observed.

This is because the number of degrees of freedom of the noise-cancelling

system (NB-I) is too small. Basically, the number of degrees of freedom has

to be equal to or greater than the number of different eigenvalues of the

interference-covariance matrix different from zero. For coherent plane

waves this is identical to the number of distinct interfering sources. In

our example the spread of the endfire source causes a spread of the source

energy over more than one eigenvalue, thus increasing the number of degrees

of freedom required for cancellation. This effect increases with an

increase in the number of sensors, i.e. with increasing resolution of the

array, as can be seen by comparing Figs. 48 and 49.

Figure 50 shows the same conditions as Fig. 49. However, two of the curves

show the situation in which two of the beams are steered permanently on the

interfering sources (which, in practice, requires a knowledge of their

positions). If there are just two noise beams and one signal beam (NB = 3)

the gain decreases because of the lack of degrees of freedom in the system.

A system with three signal beams and two interference beams is slightly

superior to the MBP with five signal beams. However, the difference is so

small that there is no reason for designing a system that needs a 'riori

knowledge of the interference geometry.

Figure 51 shows that in certain, less-complicated situations (e.g. one

broadside source) different kinds of pre-transform methods (auxiliary

sensors, MBP) yield about the same good approximation to the OQP.
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A comparison of Figs. 52 and 53 shows that the MBP is significantly

superior to the auxiliary sensor processor when applied t6 wide-angle

noise.

7.5 Linear versus Quadratic Processing

In the following, only the multiple beam processor (MBP) is considered. As

pointed out in the introduction to this chapter (Sect. 7.1), a considerable

number of arithmetic operations can be saved if the number of beams is

small compared with the number of sensors. However, the optimum quadratic

pre-transform processor still contains the covariance matrix of the signal,

which is usually not known a priori. Of course, an estimate can be

achieved by measurement if there is only one sound source around, or

alternatively, by running a modelling program. However, these results are

still range-dependent, and it is quite cumbersome to carry out the

calculation of the quadratic beamformer for all ranges. It is desirable to

have a simple, robust beamformer that does not depend on range but gives

satisfactory approximation to the optimum performance.

The simplest approximation is the conventional linear beamformer (see Ch. 5

and Eq. 73), which is supposed to operate well enough for relatively small

arrays in which the beamwidth is larger than the spatial energy distribu-

tion of the signal.

Figure 54 shows a comparison of quadratic (QP) and linear (LP) multiple

beam processing for different numbers of sensors, N. For N = 10, QP and LP

coincide almost perfectly. For N = 40, little loss in gain between QP and

LP can be recognized apart from broadside. For large arrays (N = 160) the

loss between LP and QP becomes significant. Notice that for bearing angles

less than 600 and greater than 120' the gain becomes even smaller than when

N = 40.

7.6 Suboptimum Quadratic Beamforming

The idea of suboptimum quadratic beamforming is to replace the actualt spatial signal distribution by a rectangular window, thus assuming the
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signal energy to be distributed uniformly over this interval. The

principle has been pointed out in Sects. 3.4 and 7.2. Figure 55 shows some

numerical results. The upper curve again shows the QP and the lowest one

the LP. The three curves between them show the gain of suboptimum,

quadratic, multiple beam processers with different window widths u0 as

defined in Sect. 3.4. If the window is too narrow (uo 
= 0.01) the

processor behaves like the LP. For other values of u (uo = 0.05.. .0.25)00

the gain depends on u0 only when very close to broadside. Obviously the

beamwidth causes a significant decrease in gain if it is smaller, rather

than greater, than the actual size of the spatial signal spread. This

statement was made already in the conclusion to Ch. 3 (Sect. 3.5).

7.7 Incoherent Beam Integration

Suboptimum quadratic processing can be simplified even more by replacing

the spatial filter matrix H in Eq. 74 by the unity matrix I. This promises

to give a good approximation to the optimum quadratic multiple beam

processor if the beams cover just the area of signal spread; Fig. 56 gives

a numerical example. Apart from broadside, incoherent integration leads to

the same results as the suboptimum quadratic beamformer discussed in the

previous section. At broadside even the linear processor is superior to

quadratic beam integration, which can be explained as follows: at broadside

the signal appears to the linear array to be a single line. As the beams

of the multiple beam processor are chosen to be orthogonal, only the middle

beam contains the signal whereas the others contain just noise. Consequently,

the signal-to-noise ratio in the middle beam is higher than that achieved

by integration over all beams. However, compared with the optimum

quadratic multiple beam processor, the loss is not greater than 3 dB. The

small lack in gain compared with the LP can be avoided by switching off the

auxiliary beams when steered in the area around broadside, i.e. using the

linear processor.

7.8 Comparison with OQP and COS-shading

Figures 57 and 58 show a comparison between optimum quadratic processing

(OQP), quadratic multi-beam processor (SIB), and cosine shading in a multi-
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noise-source environment. It can be observed that for small arrays (in

this case N = 20) the SIB is much superior to the linear cos-shading

processor due to main-lobe interference of the shading method. For certain

array Icngths (N 80) however, cosine shading will yield a sufficient

approximation (loss 3 dB) to the optimum. For much larger arrays (N >> 80)

nonadaptive cosine shading should be combined with quadratic beam integration,

as described in the previous section.

7.9 Conclusions on Pre-transform Array Processors

a. The multiple-beam transform (steering a bunch of orthogonally

overlapping beams in the hypothetical target direction) is superior to all

other pre-transforms, e.g. auxiliary sensor transform.

b. For arrays smaller than 20X aperture, the linear, adaptive,

multiple beam processor is almost optimum,

c. A suboptimum, quadratic, multiple beam processor can be obtained

by replacing the signal covariance matrix used for calculating the

generalized beamformer [Eq. 70] by a matrix that describes the spatial

covariance of an angle interval with uniformly distributed energy. The

loss in gain compared with the OQP is about 3 dB.

d. An even simpler method than (c) is given by incoherent integration

of the signal energy contained in orthogonally overlapping beams. Except

for broadside, the gain achieved is the same.

e. For practical application the adaptive, linear, multiple beam

processor is recommended for array apertures up to 20A. For large arrays

(>40X), incoherent integration (summation of squared outputs) of over-

lapping beams should be applied after cos-shading.
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8 INFLUENCE OF THE SENSOR BANDWIDTH

8.1 Introductory

For all results achieved so far it was assumed that signals and noise are

monochromatic or, equivalently, that the input channels have zero

bandwidth. This assumption enables us to use a normal-mode program to

model point sources, which gives essentially the solution of the wave

equation for one single frequency (Helmholtz-equation).

In practice, however, the channel bandwidth will never be zero. Otherwise,

no signal energy can be received. Any signal or noise wave arriving at the

array from directions other than broadside appears more or less delayed

between the sensors. If the received wave is a random time function (as is

particularly the case for interference) the received signal will be

correlated, because the correlation response of the narrowband filter

Up = h*h*, h is the impulse response of the filter. Consequently the cross-

correlation between sensors will be given by the correlation response of

the filters, thus causing degradation of noise-suppression performance and

of signal gain well (compared with the monochromatic case).

The purpose of the following investigation is to find out the degradation

of array gain that depends on the receiver bandwidth for some of the

processor structures discussed in the previous chapters. Two kinds of

narrowband filters are considered:

1. The rectangular time-response filter, which is equivalent to
one channel of the OFT. It is of special importance because

-* the spectral analysis in Fig. 14 can be carried out by the FFT.

2. The rectangular frequency response.

For a simple approach to the problem's solution, an additional assumption
is made, which is justified by the conclusion given in Sect. 3.5a.

It is supposed that the mode structure, i.e. the spatial energy distribution,
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is constant within the bandwidth considered. This is not exactly the case:

any change in frequency will cause a change in the energy distribution. In

particular, a continuous spectrum will cause a continuous energy distribu-

tion instead of a discrete one such as those in Figs. 3 and 4. However,

for small relative bandwidths it is supposed that no significant changes in

the signal distribution will occur. On the other hand, the results

achieved in Ch. 3 have shown that the array gain basically does not depend

very much on the individual channel and source parameters (in particular,

not on the frequency).

The rectangular time-response filter is

h(t) = e-j t /=0

The correlation response of this filter is achieved by convolving h(t) with

its conjugate complex h*(t)

p(T) = (1 -IL) eT't  [Eq. 81]

the well-known triangular correlation function.

Now the delay T has to be expressed in terms of the array geometry. Re-

calling Eq. 12, the delay of any plane wave between the i
th and the kth

sensor is determined by the distance

ri, = d(i - k).cosa . [Eq. 82]

Multiplying riX by the wavenumber k gives

k r r i  WT
i , c i,2

Consequently,

WT = d(i - k)-cosa • k

T = k.d.(i - Z) cosa / w [Eq. 83]

Defining the bandwidth of the rectangular time response filter to be

1
T'

one gets 4

gt . d(i - Z).cos. .bk [Eq. 84]
T10
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Inserting Eqs. 83 and 84 in Eq. 81 yields

(1- L .d.(i - Q).cosB * I)-

exp(jkd.(i - 9).cos) [Eq. 85]

Replacing the wavenumber k by the modal wavenumbers kn and taking the sum

over all arrivals (observing the assumption of Sect. 1.6) gives

M kn
= (1-J1 .d.(i-k).cosa. I).exp(jkn*d.(i-2)cos3),

n=l f n [Eq. 86]

which is now the spatial correlation as achieved at the outputs of the

array.

The correlation response of a narrowband filter with rectangular frequency

response is given by

fob

P(T) =  f • t df
f -b befo-

sinibT jWT [Eq. 87]

By means of Eq. 83 one gets for the correlation

M sinr 0n eJdkn (i-)cosa
pO 0 z) e , [Eq. 88]

n=l T 0n

where
b

0n = d.kn (i - Z) cosB •-

0

In the following examples it is assumed that the modification of the

covariance matrices by the receiver bandwidth, as given in Eqs. 86 and 87

respectively, is known a priori wherever covariance matrices are used in

the processing (adaptive noise suppression, matrix matched filter).
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8.2 The Optimum Quadratic Processor (OQP)

Figures 59, 60 and 61 show the array gain when the received signals have

passed rectangular time-response filters (i.e. FFT channels) before spatial

processing. Different curves correspond to different ratios T/T, where T

is now the travel time over the whole aperture and T is the inverse

bandwidth of the input filter. Different plots are due to different
interference-to-noise ratios (30, 20, 10 dB). A considerable sensitivity

to the decorrelation due to the bandwidth is observed. The sensitivity

depends on the interference-to-noise ratio. For 30 dB I/N even a T/T-ratio

of 0.01 yields considerable losses in gain (2 to 10 dB). If the I/N-ratio

is just 10 dB, T/T = 0.1 is tolerable.

Figure 62 shows the same situation except that the interference is at

broadside. In this case all arrivals at the array occur at the same time

at different sensors, so no decorrelation occurs. For T/T = 1, however, a

slight decrease in gain is observed. The reason for this behaviour is some

loss in signal gain rather than imperfect noise suppression as in the

previous examples. Consider the white-noise gain

tr(H* P H) tr p2

Gw
!tr(H*H) 2  tr2

So the white-noise gain (signal gain) depends on the nature of the signal

covariance matrix. If the signal is spatially white, i.e. P = I the gain

becomes Gw N - A . If P = s s*, i.e. a coherent wavefront, the gain

becomes Gw = N2/N = N. The second case we have at 90', therefore the gain

is maximum. At all directions different from broadside the signal

covariance matrix is influenced by both the relative bandwidth and the

signal spread. As the signal spread becomes significant for array apertures

4greater than 40A the little reduction in gain shown in Fig. 62 is mainly

due to the bandwidth.

Figure 63 shows the same conditions as Fig. 60 but for rectangular

frequency-response filters. As can be seen, the gain is now much less

sensitive to the input bandwidth than for the case of a rectangular

impulse-response filter. There are significant losses only when T/T > 1.
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8.3 Suboptimum Systems

Figures 64 to 69 consider the same conditions as in Sect. 8.2 and Fig. 60.

Figures 64 and 65 show the performance of the cos-shading processor

for rectangular impulse-response and frequency-response filters respect-

ively. Figures 66 and 67 show the infuence of the bandwidth on the dipole

processor, Figs. 68 and 69 its influence on the adaptive multibeam

processor. The general impression is that all kinds of processors

(adaptive and nonadaptive) have almost the same sensitivity to decorre.-

lation by the input channel bandwidth.

Figure 70 shows a multibeam processor with rectangular frequency response

at each beamformer output for the case of a 80-hydrophone array. A

comparison with Fig. 69 shows that the effects of sensitivity to non-zero

bandwidth increase with array length.

8.4 Conclusions on the Influence of Sensor Bandwidth

In conclusion we find the following points:

a. Rectangular impulse-response filters are attractive for spectral

analysis in broadband arrays because they can be implemented by means of

the FFT. They yield, however, serious degradation of the crosscorrelation

between different sensors. The ratio of travel time over aperture/filter

response duration should not exceed 0.01.

b. Rectangular frequency-response filters are more difficult to

implement; however, the ratio T/T = 1 is tolerable.

c. The loss in gain due to the decorrelation by non-zero input

bandwidth increases with array length and interference-to-noise ratio.

d. The results achieved can be used for the design of broadband

systems by subdividing the band into narrow sub-bands along the guidelines

given above. The final processor structure was shown in Fig. 14.
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9 DEVIATION OF THE ARRAY SHAPE FROM A STRAIGHT LINE

9.1 General Remarks

Towed arrays are quite useful for the operation of relatively low

frequencies, because they satisfy both the requirements of large aperture

and easy handling in mobile systems. However, as this kind of array is a

flexible cable, some motion of the sensors may be excited, mainly by the

vertical motion of the towing ship and, in very shallow water, by surface

waves.

Generally, the motion of each sensor will be three-dimensional. Further-

more, due to a certain stiffness of the array, the motion of neighbouring

sensors will not be independent, i.e. there will be some correlation among

sensors. It seems to be very difficult to build a statistical model for the

motion of a towed cable since it involves the knowledge of the excitation,

i.e. the statistics of the motion of the towing ship, of the motion of the

surface waves, and of the mechanics of the array cable. On the other hand,
suppose that the motion of the array is slower than any time needed for

spatial signal processing; it should then be considered to be a trend

rather than a stochastic influence on the received signals. As far as

noise suppression is concerned, such a trend can be overcome by adaptive

signal-processing techniques.

The following takes a very simple approach to solving the problem. As the

array is usually pulled at both ends in opposite directions, it will behave

more or less like a string. Therefore, for simplicity, a simple, hori-

zontal, sinusoidal deviation of the straight line is supposed. Any motion

in the vertical makes the calculation much more complicated because the

vertical pressure dependence, i.e. the normal modes, have to be taken into

account. On the other hand, sound waves in the shallow-water channel are

travelling horizontally rather than vertically. Therefore, any mismatch of

the array shape to the wave front will be more serious in the horizontal

than in the vertical direction.
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The geometry of sensor deviation is shown in Fig. 71. The original posi-

tions of the two sensors are A and B. In this case a plane wave arriving

from direction a is delayed between B and A by the distance

s = r + t = d-cos3. [Eq. 89]

Suppose that the position of sensor 2 is now C instead of B. The distance

between A and C projected on the normal vector of the wavefront is then

r = s - t = d.cosB -t. [Eq. 90]

An additional simplification is made by setting AC = d, i.e. the distance

between neighbouring hydrophones remains unchanged. The next step is to

express r by z, d and . One easily gets the equations:

t = z- cos(y-0) [Eq. 91]

k = z/siny [Eq. 92]

Z/2 = d sin = d cost [Eq. 93]

y = (1800-a)/2 = 90* - a/2 [Eq. 94]

Z2 = e2 + Z2  [Eq. 95]

d2  = Z2 + (d-e)2  [Eq. 96]

From Eqs. 93 and 94 one gets

siny = sin(90° - a/2) = cos

V/ - sin - [Eq. 97]4d2

Inserting Eqs. 91 and 95 in Eq. 90 gives

r = d'cosa - z.cos(y-o)

4d2

or, after some manipulations, using Eq. 97,

r = d'cosB - z 2 cos sino [Eq. 98]

2d 1 - V -

4d2
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Eliminating e in Eqs. 95 and 96 and solving for k gives

2 = 2d(d - /d 2 
_ Z2) [Eq. 99]

Inverting Eq. 99 in Eq. 98 gives the delay r between sensors 1 and 2 in

position C:

r = d cos - z ( d- 7 cosB + sin [Eq. 100]

At the i th sensor, therefore, a single plane wave with modal waventjmber kn
will be received as follows

xi(f) = exp[j(knri - wt)],

and the cross-correlation coefficient between the ith and the k th sensor

E{xi(f) x*(f)} = exp[Jk (ri - r
1 9 n 1 9

where

ri  d cosB - zi  cosB + sin [Eq. 101]

9.2 Numerical Results

For the numerical evaluation it is assumed that the array is distorted due

to a horizontal sine function

zi = 6 - sin(2f a'i/N), [Eq. 102]

where 6 is the amplitude of the deviation of the straight line. Results

are shown in Figs. 72 to 75. Different curves are plotted for different

deviations, 6. Figures 72 and 73 show the performance of the OLP when

the array is distorted in accordance with Eq. 102. On the processing side it

is assumed that the array is still a straight line. Obviously, the array

is more sensitive to mismatch between processing and array distortion when

a source is broadside than when it is at endfire. This follows direct

from Eq. 101. As can be seen, the factor of the cos-term is smaller than
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unity: cos6 = 1 means endfire direction whereas sina = I means broadside.
Consequently, the deviation is more transversal than longitudinal. Figures
74 and 75 show the same conditions, but for the linear cos-shading

processor. The results are very similar to those achieved for the optimum

linear processor.

9.3 Conclusions on Deviations

a. The transversal deviation of the sensors from a straight line

should not exceed O.lX.

b. With spatially white noise (no interference) the conventional

beamformer turns out to be less sensitive to mismatch than it is with

directive noise. Consequently, with directive noise the noise suppression

part of the processing is the sensitive point.

c. The sensitivity is the same for adaptive and non-adaptive methods.

d. If the motion of an array cable is slow compared with the time

required for adaptation the noise suppression part of any adaptive

processor may follow the motion of the sensors, thus leaving just the

mismatch between the distorted array and the CBF, which is less serious.

r A R= d
C rg e

WAVEFRONT Gr=r =r

r 
t

FIG. 71 GEOMETRY OF SENSOR DEVIATION
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10 PASSIVE ADAPTIVE ARRAYS: DEGRADATION DUE TO INCLUSION
OF TARGET IN ADAPTATION

10.1 Introductory

All kinds of adaptive array processors contain the inverse spatial

covariance matrix of the noise, see Sects. 3.2, 3.3, 4.2, 4.6, 7.3, 7.4.

In all previous considerations it was assumed that the noise covariance

matrix (or an estimate of it) is available. This condition can be

satisfied in active systems where the estimation of the noise covariance

(or equivalently, the adaptation of an adaptive noise-suppression algo-

rithm) can be carried out before transmitting the pulse, thus achieving a

noise estimate that is free of the target signal. In passive systems the

signal cannot be switched off; therefore only a noise-plus-signal estimate

is available.

The effect of including the signal in the noise estimation has been

discussed in [41 for the OLP. The following formula is derived

z(k2) (S/N)2max sin 2[2(m, d, [q )]
2 =1+ -, [Eq. 103]

zTk3) 4[l + (S/N) max]

where sin 2[ ] describes the mismatch between the target direction d and the
OLP -1m. In particular, sin 2(2(d, d, q-1)) = 0. z(k2) is the output
power of the OLP without the signal included in _; z(k3) is the output

power when _ contains both signal and noise. (S/N)max is the maximum gain

achievable by the OLP:
Ps

(S/N)max  = d_* Q'd .*--n
max n

Interpreting Eq. 103 leads to the conclusion that, if there is no mismatch,

the inclusion of the signal in the noise suppression part T-1 has no

influence on the output power, i.e. z(k3) = z(12). Furthermore the ratio

z(k2) / z(k3) depends on the signal-to-noise ratio at the output of the OLP
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when perfectly matched to the signal source. Therefore, if either the

signal/white-noise ratio is high and/or the array has high gain, the ratio

becomes very sensitive to any mismatch between the OLP transformer and the

actual target direction. In other words, inclusion of the signal causes a

rather narrow beam, which may be desirable for position-finding purposes.

In detection systems used for target search, however, a very narrow beam

might cause an undesirable increase in scanning rate and hence in

operation time and data rate. The usual strategy is first to detect

targets with the normal array resolution and secondly to apply high-

resolution or split-beam techniques for high-accuracy position-finding only

to targets already detected.

Now let us generalize the sensitivity result [Eq. 103] to random wavefronts

and quadratic processing by means of the following consideration: suppose

the random wavefront to be described by a covariance matrix P. As P is

hermitian and positive definite, it can be factored in the following way:

P = E A E*

where E is the unitary matrix of eigenvectors and A the diagonal matrix of

real positive eigenvalues.

Considering just one eigenvalue gives

0

0 0

P i = E 0 i E*,
-1 - 0 0

"0

which is obviously a dyadic of the i th eigenvector with its conjugate
complex transpose

i : iiI

The total matrix is given by

N

i=l
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In other words, any random wavefront, sampled at N points in space, can be
described in the mean as a sum of N fictive coherent waves ti with powers
Ai" Now the sensitivity result [Eq. 103] can be applied direct to the OQP

because its output appears to be just a sum of the output signals of N

perfectly matched beamformers. Therefore the gain of the OQP is not

degraded by inclusion of the signal in the noise estimation (or adaptation)

when perfectly matched.

Linear processors, however, are mismatched to the target signal for all

directions except broadside. Therefore a peak in the gain curves can be

expected at broadside, whereas some decrease in gain is unavoidable for all

other directions. The quadratic multiple beam processor, which is some

approximation to the OQP, is supposed to yield array gain somewhere between

OQP and OLP.

10.2 Constrained Adaptation

One way of avoiding the gain degradation of adaptive array processors due

to inclusion of the signal direction in the adaptation is given by the so-

called constrained array processors [1,6,6,7,8,23 1. The idea of these

processors is to superimpose a constraint on the adaptation process such

that the signal (i.e. the beam direction) does not influence the adaptation.

There are basically two ways of implementation. One way is to include the

constraint (e.g. a set of weights such that the noise estimator is blind

for the target direction) directly in the adaptive algorithm fC,?.

Alternatively, a fixed pre-transform has to be chosen such that the target

direction is eliminated out of the noise estimation. The pre-transform may

be of the form of Eqs. 53 or 56 for processors like OQP and OLP. For

processors of the pre-transform type, Eqs. 66 or 67 represent constrained

pre-transforms. It has been pointed out in 18] that algorithms of the

first type (constrained adaptive algorithms) converge in the mean to

certain processors of the second kind. In the following, only a few pre-

transform type processors are considered.

Two basic kinds of constrained pre-transform processors have been described

already in Ch. 7 (see Eq. 46 and 67). Equation 66 describes just dipoles
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with the null steered in the direction of the beam. Weightings as shown in

Eq. 67 yield some arbitrary array pattern with a null in the beam direction.

The nulls of the array patterns given by Eq. 67 are much narrower than

those of a dipole, thus causing a processor that is very sensitive to

mismatch of the beam direction to the target position. In addition, as

discussed already in Ch. 6, for shallow-water application, dipoles appear to

be much more useful for signal or noise suppression than nulls in the array

pattern (see the conclusion of Sect. 6.3a,b ). Consequently only a

processor of the type of Eq. 66 will be considered in the numerical evaluation.

A more general approach is suggested in the following. It has, however,

not yet been investigated in detail, therefore no prediction on the

performance of this method can be made at present. All the constrained

adaptive processors mentioned above are more or less sensitive to mismatch

between signal direction and beamformer, i.e. between signal direction and

null of auxiliary patterns. There is always a certain insensitive angle that

is determined by the signal-to-noise ratio, see Fig. 76. If the noise

level is far below the signal level the constraint processor becomes very

sensitive to mismatch between beam and target direction.

For target search an insensitive angle interval of about the same width as

the beamwidth is desired (see Fig. 76). The idea is now to describe the

interval statistically, i.e. to try to approximate the angle interval by a

B x B-covariance matrix, B being the number of auxiliary channels. The

covariance matrix is used to design a "target suppression filter" that has

to be inserted in the noise suppression part of the pre-transform. Suppose

that there are random plane waves uniformly distributed over the angle

interval 26. Then the spatial correlation becomes

6 0 +6
p(O) f eiEu du 6 e ' [Eq. 104]06 0-6

where 0 k.d.(i - )

60 cosa.
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Taking into account the white-noise level with power Pw' the interval

covariance matrix R contains the values

p(i- p(O) i

1 +P i:z.
w

As R is positive it can be factorized

R = C* C

where C may be the Cholesky-factorized triangular matrix or any unitary

transform of it. Suppose a vector a such that E{a a*} = R. Then the

transform

decorrelates a such that
E e}=C-1R C -Cl C* CC -  = i.

Hence multiplying the vector of auxiliary sensor outputs chosen for noise

estimation by C* -l gives the desired transform for suppression of any

signal arriving from the interval 26.

For a noise-cancellation system for auxiliary sensors one gets the

constrained transform

y = K* T x, [Eq. 105]

where x is the vector of sensor output signals,( b*
T5 1

1 choice of

auxiliary
1 sensors

and

1 0... 0

K*E 0

0 /
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A simple example may clarify up matters. Suppose the number of auxiliary

sensors to be 2. The normalized 2 x 2-covariance matrix of the interval

becomes

( Jal < 1,
( a * 1

and the inverse

R- (a ) -a*

Factorization gives

1 0
C* - ] lu

(-a* aa*

such that C - C 1  R Let us now consider the case IaI= 1, which

happens if the width of the interval 6 = 0 and no white noise is assumed.

Now the constraint matrix converges to

1ie 0)

C -  (j6) , [Eq. 106]
-e 0

i.e. in the limit we again get a dipole pattern with the null steered in

the direction 60 = 2cos6, i.e. the target direction.

To obtain proper performance of a constrained array processor as described

above, the interval width, the interval noise, and the number of auxiliary

sensors should be carefully chosen. Furthermore, a certain scaling of C
* -1

should be made in order to avoid numerical problems in the subsequent

processing, particularly for the subsequent inversion of the noise

covariance matrix N = T q T*. Some more work should be done on that

subject, which would exceed the limits of this report.

10.3 The Optimum Linear Processor (0LP)

Figures 77, 78 and 79 show numerical examples for the case in which the

signal is included when adapting the QLP to the noise field. There are
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three different curves for different ranges of the target (1, 5, 25 km).

The range of the interference is 1 km, as before. There is just one point

where all curves coincide: 900 (broadside). This is the only direction

where the conventional beamformer contained in the OLP is perfectly matched

to the target signal. For all other directions we have some mismatch, for

the two reasons mentioned in Ch. 4: on the one hand there is a mismatch in

that the signal appears to be spread in the horizontal whereas the

beamformer assumes a coherent plane wave; on the other hand the beamformer

was always steered in the true position of the target, which causes some

off-set for bearing angles distant from broadside. As can be seen in the

example in Fig. 77, the gain reduction is greater as the target approaches.

At 25 km range almost the optimum gain is achieved. This depends, however,

on many different parameters that influence the sound propagation, and,

furthermore, on the target strength.

As all these parameters are usually unknown in practice and may change

considerably, a general prediction of the performance of the OLP cannot be

made. The example in Fig. 78 shows the same conditions except for the

noise (I/N = 40 dB). The results are similar to the previous ones. If,

however, the array length increases (Fig. 79), e.g. N = 80, even a target

at 25 km range causes considerable decrease in gain.

10.4 Pre-transform Array Processors

Figures 80 to 83 show three numerical comparisons of different pre-

transform processors with the OQP. Figure 80 shows the performance of the

quadratic multi-beam processor (MBP) for different target ranges. The

parameters are the same as before. As the beams of the MBP have been

chosen to be orthogonal to each other the auxiliary beams are orthogonal to

the target direction. Therefore, at broadside, only the middle beam

contains the signal whereas the other gives a signal-free noise estimate.

For all other directions, however, the signal is no longer orthogonal to

the auxiliary beams, i.e. the spread signal cannot be suppressed by a

null in the beam pattern. Consequently we get a peak in the gain curves at

90' and a considerable decrease elsewhere, depending on the range of the
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target. Figure 82 shows the same curves for an auxiliary sensor processor.

Here the signal energy is always contained in the auxiliary channels, so

that the gain decreases everywhere. Figure 82 shows the performance of an

auxiliary difference element processor as described by Eq. 66. The results

are quite similar to those achieved in Fig. 81. In fact, both the

processors are similar to each other in that the MBP has auxiliary beam

patterns with a null steered in the target direction, whereas the other

uses dipole patterns with the null steered in the target direction. The

decrease is less serious for very short arrays (see Fig. 83) and for a low

interference-to-noise ratio (see Fig. 84) which corresponds again to the

result of Cox (1].

It was assumed in the examples in this chapter, that target and inter-

ference have equal strength and that differences in the power level are

just given by the transmission loss of the channel. In general, however,

the strength of a target will be somewhat less than the strength of

interfering sources, which leads to a better performance of the array

processor.

10.5 Conclusions on Passive Adaptive Arrays

a. In passive systems the spatial signal spread of the signal causes

any kind of beamformer (linear, quadratic) to be more or less mismatched to
the signal. Furthermore, due to the signal spread it is not possible to

achieve a signal-free interference estimate by conventional methods, such

as steering a null of auxiliary dipole patterns or auxiliary beam patterns
in the target direction.

b. Both effects mentioned under (a) occur for all bearing angles

except broadside.

c. As a consequence of (a), the performance of adaptive array

processors in passive systems depends very much on the usually unknown

signal-to-interference ratio.

d. For very small arrays an array processor using auxiliary dipole

patterns may yield satisfactory performance. For large arrays nonadaptive

methods (dipole null-steering, shading, see Chs. 5 and 6) should be applied.
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11 CARDIOID SENSOR PATTERNS

11.1 General Remarks

An obvious disadvantage of linear arrays is their rotational symmetry. On

the one hand line arrays have a relatively poor performance if the noise is

isotropic, which is more or less the case for surface noise and other kinds

of ambient noise. Some additional gain can be achieved by using a two-

dimensional array with a vertical beamwidth of about 400 in order to match

the beamwidth properly to the vertical distribution of the signal energy

(see Figs. 2 to 13). Even better performance can be achieved by covering

an area of t20 ° in the vertical by a bunch of beams narrower than 400 and

integrating over the beams (multibeam processor). However, two-dimensional

arrays are not so easy to handle, particularly in mobile systems.

Additional gain can also be obtained by using directive sensors, e.g.

sensors with cardioid patterns. In the direction of the maximum of the

cardioide 3 dB gain is achieved in uncorrelated noise. Furthermore,

cardioide sensors offer the possibility of distinguishing between left and

right. The gain calculation is straightforward. All the arrivals, as

given by Eq. 9, have to be multiplied by the three-dimensional cardioide

patterns, which is

d(e,6) 1 + sin6 • cosO, [Eq. 107]

where 0 and B denote elevation and azimuth in spherical coordinates, i.e.

6 = 0 to 360', 0 = -900 to 900. e = 00, meaning the horizontal plane at

the position of the array. For B = 90' and 0 = 00 one gets the maximum

d(e,o) = 2, for a = 2700 and 0 0 0 it follows that d(e,d) = 0. A

cross-section at 6 = 0' and 1800 gives a vertical unit circle, i.e. at

endfire and backfire direction of the array the sensors behave omni-

directional. For arrivals due to different modes one gets the simple

relation

k n
cos 0 n :'

0
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Therefore, Eq. 107 becomes

k
dn = 1 + sin8 n - [Eq. 108]

11.2 Gain Calculation

Now the array gain can be calculated as before. Figures 85 to 89 show gain

curves for the OQP and the cosine processor (cardioid vs omnidirectional

pattern). One noise 4ource at 00 bearing is assumed. The point to be

observed is that for O.5A spaced arrays it may happen that the gain is not

unambiguous with bearing as it is with white noise (Fig. 85). For O.5X

spacing the noise source at 00 causes a "grating minimum" at 180 ° such that

there is another maximum beyond 1800, e.g. at 2000 in Fig. 86. This effect

is of course more serious with the cosine processor (Fig. 87). In the

vicinity of the grating minimum strong targets may still be detected;

however, no decision can be made as to whether the target is on the left or

the right. This effect becomes less significant for larger arrays where

the grating minimum becomes narrower and less deep. In any case it can be

overcome by some smdller spacing, as seen in Figs. 88 and 89.

11.3 Conclusion on Cardioid Sensor Patterns

The use of cardioid patterns instead of omnidirectional sensors is an

appropriate aid for distinguishing between left and right. The array

spacing should be somewhat less than O.5X.
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CONCLUSIONS

The detection performance (array gain) of horizontal linear hydrophone

arrays operating in shallow water in the presence of directive inter-

ference has been investigated in some detail. The following summarizes

those results that are important for applications. Further information

is provided in the concluding Sections of Chs. 2 to 11.

a. In the shallow-water sound-propagation channel the sound energy of

a point source may be spread over a vertical angle of about ±200. The

vertical energy spread appears to a horizontal line array as a horizontal

spread. The horizontal spread is proportional to the cosine of the

bearing, i.e. is zero for broadside and about ±200 at endfire.

b. Suppression of point sources is limited by the white noise rather

than by the medium effect, i.e. the signal spread (Ch. 3).

c. For small apertures (less than 20X) the linear adaptive processor

(OLP) is almost optimum. For larger apertures quadratic beamforming has to

be applied (Ch. 4).

d. Cosine shading is a useful approximation to optimum processing for

about 50A aperture. The loss compared with QQP is about 3 dB (Ch. 5).

e. One noise source with known direction (e.g. towing-ship noise) can

be suppressed quite well by combining adjacent sensors to cardioid diagrams

such that the null points into the noise direction (Ch. 6).

f. The adaptive multi beam processor is the best suboptimum array

processor for arbitrary apertures. The loss compared with optimum

processing is about I dB (depending on the number of beams, Ch. 7).

g. For apertures greater than 20X, different slightly overlapping

beams have to be formed in order to cover the whole area of signal

spread. The beam outputs have to be summed incoherently (Ch. 7).
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h. The sensor outputs should be followed by narrowband filters with

rectangular frequency response (Ch. 8).

i. If the array is a flexible cable the deviation from a straight

line should not exceed 0.lX (Ch. 9).

j. The spatial spread of the signal makes adaptive processors very

sensitive to inclusion of the signal in the adaptation process. Therefore

adaptive processing is recommended only for very short passive arrays

(Ch. 10).

k. The best array performance is achieved at broadside for several

different reasons. Consequently mechanical steering (manoeuvring) should

be taken into account (all chapters).

C. Cardioid sensor patterns are very useful for distinguishing

between left and right (Ch. 11).

m. The signal spread causes adaptive systems to be very sensitive to

inclusion of the signal in adaptation (passive systems). Even the

performance of constrained processors is degraded seriously because, to be

superimposed on adaptation, the constraint depends considerably on the

actual parameters of the medium, i.e. on the actual signal energy

distribution.
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